{"title":"Insights into excitons manipulation in metal chalcogenides based Nano-heterojunction Photocatalysts: A breakthrough in green hydrogen production","authors":"","doi":"10.1016/j.ccr.2024.216176","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of nanoscience and technology has ushered in a realm of possibilities in photocatalysis research, offering transformative applications in energy and environmental sustainability. However, the practical utility of unmodified single semiconductor photocatalysts is hampered by limitations such as a restricted absorption spectrum, low intensity, unproductive recombination of photogenerated electrons and holes, and insufficient catalytic active sites. Among the myriad strategies reported in the literature, the construction of semiconductor heterojunctions emerges as exceptionally successful. This review delves into the rational design and development of efficient photocatalysts, focusing on the nuanced suppression of electrons and holes to facilitate enhanced redox reactions. Key elements explored include morphology control, the formation of diverse heterojunctions, the significance of synthesis methods, and the optimization of essential reaction parameters for hydrogen production. Addressing the broader landscape of challenges, the review not only delineates the advantages and limitations of these strategies but also provides practical insights and tips to overcome hurdles encountered during material synthesis and photocatalytic reactions. Through a comprehensive exploration of the intricacies involved, the review serves as a valuable guide for students and newcomers to the subject area. Moreover, this work transcends its immediate scope, offering new ideas, reasoned conclusions, and forward-looking proposals that aim to shape the trajectory of future research. It is not merely a compendium of knowledge but a catalyst that stimulates researchers working within the field and across interdisciplinary domains. As we navigate the intricate interplay of electrons and holes at the heterojunction interface, this review charts a course toward innovative solutions, ultimately propelling the field of photocatalysis into new frontiers.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005228","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of nanoscience and technology has ushered in a realm of possibilities in photocatalysis research, offering transformative applications in energy and environmental sustainability. However, the practical utility of unmodified single semiconductor photocatalysts is hampered by limitations such as a restricted absorption spectrum, low intensity, unproductive recombination of photogenerated electrons and holes, and insufficient catalytic active sites. Among the myriad strategies reported in the literature, the construction of semiconductor heterojunctions emerges as exceptionally successful. This review delves into the rational design and development of efficient photocatalysts, focusing on the nuanced suppression of electrons and holes to facilitate enhanced redox reactions. Key elements explored include morphology control, the formation of diverse heterojunctions, the significance of synthesis methods, and the optimization of essential reaction parameters for hydrogen production. Addressing the broader landscape of challenges, the review not only delineates the advantages and limitations of these strategies but also provides practical insights and tips to overcome hurdles encountered during material synthesis and photocatalytic reactions. Through a comprehensive exploration of the intricacies involved, the review serves as a valuable guide for students and newcomers to the subject area. Moreover, this work transcends its immediate scope, offering new ideas, reasoned conclusions, and forward-looking proposals that aim to shape the trajectory of future research. It is not merely a compendium of knowledge but a catalyst that stimulates researchers working within the field and across interdisciplinary domains. As we navigate the intricate interplay of electrons and holes at the heterojunction interface, this review charts a course toward innovative solutions, ultimately propelling the field of photocatalysis into new frontiers.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.