Hamid Hadi , Ahmed Mahmoud Ahmed Mahmoud , Imen Cherif , Reza Safari , Bouzid Gassoumi , Balkis Abdelaziz , A Aathif Basha , Predhanekar Mohamed Imran , Muhammad Usman Khan , Hasan Zandi , Mounira Mahdouani , Sahbi Ayachi , Rafik Ben Chaabane , Mahmoud M. Hessien
{"title":"Influence of nitrogen exchange in the core-shell structure of naphthalenediimide molecules on the advancement of quantum electronic properties","authors":"Hamid Hadi , Ahmed Mahmoud Ahmed Mahmoud , Imen Cherif , Reza Safari , Bouzid Gassoumi , Balkis Abdelaziz , A Aathif Basha , Predhanekar Mohamed Imran , Muhammad Usman Khan , Hasan Zandi , Mounira Mahdouani , Sahbi Ayachi , Rafik Ben Chaabane , Mahmoud M. Hessien","doi":"10.1016/j.synthmet.2024.117748","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores how nitrogen substitution and gold electrodes collectively influence the electronic characteristics of naphthalenediimide (NDI) molecules (M = 1, 2, and 3) through theoretical analysis. Utilizing ELF, LOL, QTAIM, and NCI analyses, we reveal significant alterations in NDI's electronic structure and interactions upon bonding with gold electrodes (Au-M-Au). Both ELF and LOL analyses demonstrate increased electron localization and delocalization on the NDI surface due to gold electrodes, with a stronger effect on nitrogen-doped molecules (M = 2, 3). QTAIM analysis confirms favorable non-covalent interactions, including evident hydrogen bonding, between NDI molecules and gold electrodes, notably intensified in doped molecules, especially the Au…O interaction. NCI analysis provides insight into the diverse interactions within the molecular system. Overall, this research highlights the crucial role of gold electrodes and nitrogen substitution in fine-tuning NDI molecules' electronic properties. The observed modulation of electron behavior and formation of beneficial interactions with gold electrodes hint at promising applications for doped NDI-gold systems requiring efficient charge transport mechanisms.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117748"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores how nitrogen substitution and gold electrodes collectively influence the electronic characteristics of naphthalenediimide (NDI) molecules (M = 1, 2, and 3) through theoretical analysis. Utilizing ELF, LOL, QTAIM, and NCI analyses, we reveal significant alterations in NDI's electronic structure and interactions upon bonding with gold electrodes (Au-M-Au). Both ELF and LOL analyses demonstrate increased electron localization and delocalization on the NDI surface due to gold electrodes, with a stronger effect on nitrogen-doped molecules (M = 2, 3). QTAIM analysis confirms favorable non-covalent interactions, including evident hydrogen bonding, between NDI molecules and gold electrodes, notably intensified in doped molecules, especially the Au…O interaction. NCI analysis provides insight into the diverse interactions within the molecular system. Overall, this research highlights the crucial role of gold electrodes and nitrogen substitution in fine-tuning NDI molecules' electronic properties. The observed modulation of electron behavior and formation of beneficial interactions with gold electrodes hint at promising applications for doped NDI-gold systems requiring efficient charge transport mechanisms.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.