Tengwei Xiao , Xiangchao ShangGuan , Yu Wang , Zhonghe Tian , Kejian Peng , Zhenguo Shen , Zhubing Hu , Yan Xia
{"title":"The germin-like protein OsGLP8-7 is involved in lignin synthesis for acclimation to copper toxicity in rice","authors":"Tengwei Xiao , Xiangchao ShangGuan , Yu Wang , Zhonghe Tian , Kejian Peng , Zhenguo Shen , Zhubing Hu , Yan Xia","doi":"10.1016/j.jplph.2024.154335","DOIUrl":null,"url":null,"abstract":"<div><p>Although copper (Cu) is an essential microelement for plant growth and development, excess Cu results in a dramatic reduction in crop yield and quality. In the present study, we report that rice germin-like protein 8-7 (OsGLP8-7) plays a crucial role against Cu toxicity. The results showed that the transcriptional expression of the <em>OsGLP8-7</em> gene was remarkably upregulated in the root and leaf by Cu treatment. The depletion of <em>OsGLP8-7</em> significantly decreased the elongation of the primary root and plant height of rice under excess Cu. This hypersensitivity of <em>osglp8-7</em> mutants towards excess Cu may be attributed to the weaker Cu retention in the cell wall compared with wild-type rice (Dongjin, DJ). Consistently, Cu-induced phenylpropanoid biosynthesis was compromised in <em>osglp8-7</em> mutants based on RNA-Seq and qRT-PCR analysis. Furthermore, <em>osglp8-7</em> mutants displayed a reduction of lignin deposition in the cell wall, and subsequently altered cell morphology. <em>Osglp8-7</em> mutant lines also had higher Cu-induced O<sub>2</sub><sup>•</sup><sup>−</sup> and H<sub>2</sub>O<sub>2</sub> levels than those of DJ under Cu stress. The results suggest that OsGLP8-7 participates in lignin synthesis for the acclimation to excess Cu. These findings provide a better understanding of a novel mechanism of germin-like proteins in the alleviation of heavy metal toxicity in rice.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"303 ","pages":"Article 154335"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001664","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although copper (Cu) is an essential microelement for plant growth and development, excess Cu results in a dramatic reduction in crop yield and quality. In the present study, we report that rice germin-like protein 8-7 (OsGLP8-7) plays a crucial role against Cu toxicity. The results showed that the transcriptional expression of the OsGLP8-7 gene was remarkably upregulated in the root and leaf by Cu treatment. The depletion of OsGLP8-7 significantly decreased the elongation of the primary root and plant height of rice under excess Cu. This hypersensitivity of osglp8-7 mutants towards excess Cu may be attributed to the weaker Cu retention in the cell wall compared with wild-type rice (Dongjin, DJ). Consistently, Cu-induced phenylpropanoid biosynthesis was compromised in osglp8-7 mutants based on RNA-Seq and qRT-PCR analysis. Furthermore, osglp8-7 mutants displayed a reduction of lignin deposition in the cell wall, and subsequently altered cell morphology. Osglp8-7 mutant lines also had higher Cu-induced O2•− and H2O2 levels than those of DJ under Cu stress. The results suggest that OsGLP8-7 participates in lignin synthesis for the acclimation to excess Cu. These findings provide a better understanding of a novel mechanism of germin-like proteins in the alleviation of heavy metal toxicity in rice.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.