An efficient algorithm for group testing with runlength constraints

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Marco Dalai , Stefano Della Fiore , Adele A. Rescigno , Ugo Vaccaro
{"title":"An efficient algorithm for group testing with runlength constraints","authors":"Marco Dalai ,&nbsp;Stefano Della Fiore ,&nbsp;Adele A. Rescigno ,&nbsp;Ugo Vaccaro","doi":"10.1016/j.dam.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide an efficient algorithm to construct almost optimal <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes with runlength constraints. A <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed code of length <span><math><mi>t</mi></math></span> is a <span><math><mrow><mi>t</mi><mo>×</mo><mi>n</mi></mrow></math></span> binary matrix such that any two 1’s in each column are separated by a run of at least <span><math><mi>d</mi></math></span> 0’s, and such that for any column <span><math><mi>c</mi></math></span> and any other <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns, there exists a row where <span><math><mi>c</mi></math></span> has 1 and all the remaining <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.</p><p>By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for the construction of <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes of length <span><math><mrow><mi>t</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mi>k</mi><mo>log</mo><mi>n</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. We also show that the length of our codes is shorter, for <span><math><mi>n</mi></math></span> sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 181-187"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003913","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide an efficient algorithm to construct almost optimal (k,n,d)-superimposed codes with runlength constraints. A (k,n,d)-superimposed code of length t is a t×n binary matrix such that any two 1’s in each column are separated by a run of at least d 0’s, and such that for any column c and any other k1 columns, there exists a row where c has 1 and all the remaining k1 columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.

By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity Θ(tn2) for the construction of (k,n,d)-superimposed codes of length t=O(dklogn+k2logn). We also show that the length of our codes is shorter, for n sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).

具有运行长度限制的分组测试高效算法
在本文中,我们提供了一种高效算法,用于构建具有运行长度限制的几乎最优的(k,n,d)叠加码。长度为 t 的(k,n,d)叠加码是一个 t×n 二进制矩阵,每列中的任意两个 1 之间至少有 d 个 0 隔开,并且对于任意列 c 和任意其他 k-1 列,存在一行 c 为 1,其余 k-1 列均为 0。(通过使用 Moser 和 Tardos 的构造版 Lovász Local Lemma,我们提供了一种复杂度为 Θ(tn2)的高效随机拉斯维加斯算法,用于构建长度为 t=O(dklogn+k2logn) 的 (k,n,d) 叠加码。)我们还证明,在 n 足够大的情况下,我们的代码长度比 Agarwal 等人 (2020) 中证明存在的代码长度更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信