Two-disjoint-cycle-cover edge/vertex bipancyclicity of star graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shudan Xue, Zai Ping Lu, Hongwei Qiao
{"title":"Two-disjoint-cycle-cover edge/vertex bipancyclicity of star graphs","authors":"Shudan Xue,&nbsp;Zai Ping Lu,&nbsp;Hongwei Qiao","doi":"10.1016/j.dam.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>A bipartite graph <span><math><mi>G</mi></math></span> is two-disjoint-cycle-cover edge <span><math><mrow><mo>[</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></math></span>-bipancyclic if, for any vertex-disjoint edges <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> and <span><math><mrow><mi>x</mi><mi>y</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> and any even integer <span><math><mi>ℓ</mi></math></span> satisfying <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><mi>ℓ</mi><mo>⩽</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, there exist vertex-disjoint cycles <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mi>ℓ</mi></mrow></math></span>, <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mi>ℓ</mi></mrow></math></span>, <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In this paper, we prove that the <span><math><mi>n</mi></math></span>-star graph <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is two-disjoint-cycle-cover edge <span><math><mrow><mo>[</mo><mn>6</mn><mo>,</mo><mfrac><mrow><mi>n</mi><mo>!</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></math></span>-bipancyclic for <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>5</mn></mrow></math></span>, and thus it is two-disjoint-cycle-cover vertex <span><math><mrow><mo>[</mo><mn>6</mn><mo>,</mo><mfrac><mrow><mi>n</mi><mo>!</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></math></span>-bipancyclic for <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>5</mn></mrow></math></span>. Additionally, it is examined that <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is two-disjoint-cycle-cover <span><math><mrow><mo>[</mo><mn>6</mn><mo>,</mo><mfrac><mrow><mi>n</mi><mo>!</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow></math></span>-bipancyclic for <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>4</mn></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 196-208"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003950","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A bipartite graph G is two-disjoint-cycle-cover edge [r1,r2]-bipancyclic if, for any vertex-disjoint edges uv and xy in G and any even integer satisfying r1r2, there exist vertex-disjoint cycles C1 and C2 such that |V(C1)|=, |V(C2)|=|V(G)|, uvE(C1) and xyE(C2). In this paper, we prove that the n-star graph Sn is two-disjoint-cycle-cover edge [6,n!2]-bipancyclic for n5, and thus it is two-disjoint-cycle-cover vertex [6,n!2]-bipancyclic for n5. Additionally, it is examined that Sn is two-disjoint-cycle-cover [6,n!2]-bipancyclic for n4.

星形图的两两相接-循环-覆盖边/顶点双周期性
如果对于 G 中任意顶点相接的边 uv 和 xy 以及满足 r1⩽ℓ⩽r2.的任意偶整数 ℓ,则双矢点图 G 是双相接循环覆盖边 [r1,r2]-bipancyclic 图、存在顶点相交的循环 C1 和 C2,使得|V(C1)|=ℓ,|V(C2)|=|V(G)|-ℓ,uv∈E(C1) 和 xy∈E(C2) 。本文证明了 n 星图 Sn 在 n⩾5 时是两两相交循环覆盖边 [6,n!2]- 双峰环形,因此在 n⩾5 时是两两相交循环覆盖顶点 [6,n!2]- 双峰环形。另外,检验 Sn 是 n⩾4 的二相交循环顶点 [6,n!2]-双性环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信