{"title":"A rapid approach to urban traffic noise mapping with a generative adversarial network","authors":"Xinhao Yang , Zhen Han , Xiaodong Lu , Yuan Zhang","doi":"10.1016/j.apacoust.2024.110268","DOIUrl":null,"url":null,"abstract":"<div><p>With rapid urbanisation and the accompanying increase in traffic density, traffic noise has become a major concern in urban planning. However, traditional grid noise mapping methods have limitations in terms of time consumption, software costs, and a lack of parameter integration interfaces. These limitations hinder their ability to meet the need for iterative updates and rapid performance feedback in the early design stages of street-scale urban planning. Herein, we developed a rapid urban traffic noise mapping technique that leverages generative adversarial networks (GANs) as a surrogate model. This approach enables the rapid assessment of urban traffic noise distribution by using urban elements such as roads and buildings as the input. The mean values for the mean squared error (RMSE) and structural similarity index (SSIM) are 0.3024 dB(A) and 0.8528, respectively, for the validation dataset. The trained model is integrated into Grasshopper as a tool, facilitating the rapid generation of traffic noise maps. This integration allows urban designers and planners, even those without expertise in acoustics, to easily anticipate changes in acoustics impacts caused by design in the early design stages.</p></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004195","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With rapid urbanisation and the accompanying increase in traffic density, traffic noise has become a major concern in urban planning. However, traditional grid noise mapping methods have limitations in terms of time consumption, software costs, and a lack of parameter integration interfaces. These limitations hinder their ability to meet the need for iterative updates and rapid performance feedback in the early design stages of street-scale urban planning. Herein, we developed a rapid urban traffic noise mapping technique that leverages generative adversarial networks (GANs) as a surrogate model. This approach enables the rapid assessment of urban traffic noise distribution by using urban elements such as roads and buildings as the input. The mean values for the mean squared error (RMSE) and structural similarity index (SSIM) are 0.3024 dB(A) and 0.8528, respectively, for the validation dataset. The trained model is integrated into Grasshopper as a tool, facilitating the rapid generation of traffic noise maps. This integration allows urban designers and planners, even those without expertise in acoustics, to easily anticipate changes in acoustics impacts caused by design in the early design stages.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.