Finite element approximation for a delayed generalized Burgers-Huxley equation with weakly singular kernels: Part I Well-posedness, regularity and conforming approximation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Sumit Mahajan, Arbaz Khan, Manil T. Mohan
{"title":"Finite element approximation for a delayed generalized Burgers-Huxley equation with weakly singular kernels: Part I Well-posedness, regularity and conforming approximation","authors":"Sumit Mahajan,&nbsp;Arbaz Khan,&nbsp;Manil T. Mohan","doi":"10.1016/j.camwa.2024.08.036","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explore the theoretical and numerical aspects of the generalized Burgers-Huxley equation (a non-linear advection-diffusion-reaction problem) incorporating weakly singular kernels in a <em>d</em>-dimensional domain, where <span><math><mi>d</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. For the continuous problem, we provide an in-depth discussion on the existence and the uniqueness of weak solution using the Faedo-Galerkin approximation technique. Further, regularity results for the weak solution are derived based on assumptions of smoothness for both the initial data and the external forcing. Using the regularity of the solution, the uniqueness of weak solutions has been established. In terms of numerical approximation, we introduce a semi-discrete scheme using the conforming finite element method (CFEM) for space discretization and derive optimal error estimates. Subsequently, we present a fully discrete approximation scheme that employs backward Euler discretization in time and CFEM in space. A priori error estimates for both the semi-discrete and fully discrete schemes are discussed under minimal regularity assumptions. To validate our theoretical findings, we provide computational results that lend support to the derived conclusions.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the theoretical and numerical aspects of the generalized Burgers-Huxley equation (a non-linear advection-diffusion-reaction problem) incorporating weakly singular kernels in a d-dimensional domain, where d{2,3}. For the continuous problem, we provide an in-depth discussion on the existence and the uniqueness of weak solution using the Faedo-Galerkin approximation technique. Further, regularity results for the weak solution are derived based on assumptions of smoothness for both the initial data and the external forcing. Using the regularity of the solution, the uniqueness of weak solutions has been established. In terms of numerical approximation, we introduce a semi-discrete scheme using the conforming finite element method (CFEM) for space discretization and derive optimal error estimates. Subsequently, we present a fully discrete approximation scheme that employs backward Euler discretization in time and CFEM in space. A priori error estimates for both the semi-discrete and fully discrete schemes are discussed under minimal regularity assumptions. To validate our theoretical findings, we provide computational results that lend support to the derived conclusions.

具有弱奇异内核的延迟广义伯格斯-赫胥黎方程的有限元近似:第一部分 拟定性、正则性和符合逼近
在本研究中,我们探讨了在 d 维域(d∈{2,3})中包含弱奇异核的广义伯格斯-赫胥黎方程(非线性平流-扩散-反应问题)的理论和数值问题。对于连续问题,我们利用 Faedo-Galerkin 近似技术深入讨论了弱解的存在性和唯一性。此外,基于初始数据和外部约束的平稳性假设,我们还得出了弱解的正则性结果。利用解的正则性,确定了弱解的唯一性。在数值近似方面,我们采用符合有限元法(CFEM)引入了一种半离散方案进行空间离散化,并得出了最佳误差估计值。随后,我们提出了一种完全离散的近似方案,在时间上采用后向欧拉离散法,在空间上采用 CFEM。在最小规则性假设下,讨论了半离散和完全离散方案的先验误差估计。为了验证我们的理论发现,我们提供了支持推导结论的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信