A hydro-thermo-chemo-mechanical model for slag-blended cementitious systems at early ages

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"A hydro-thermo-chemo-mechanical model for slag-blended cementitious systems at early ages","authors":"","doi":"10.1016/j.compositesb.2024.111830","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive hydro-thermo-chemo-mechanical model for predicting the early-age properties development of slag-blended cementitious systems is presented in this study. A new kinetic evolution for slag reaction that takes into account the heterogeneous nucleation effect and induction time of slag was proposed, with which the model effectively quantifies the contributions of slag to the hydration, energy exchange and mass conversation within blended systems. This paper provides a thorough documentation of input parameters, fundamental equations, and constitutive laws associated with the model. The hydro-thermo-chemo-mechanical model successfully predicts the heat release, hydration degrees of cement and slag, self-desiccation, basic creep and autogenous shrinkage in slag-blended cementitious systems. The predictions align well with the experimental observation obtained from this work and reported works in the literature, validating the accuracy and reliability of the proposed model in capturing and explaining the complex early-age behaviors of slag-blended cementitious systems.</p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006425","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive hydro-thermo-chemo-mechanical model for predicting the early-age properties development of slag-blended cementitious systems is presented in this study. A new kinetic evolution for slag reaction that takes into account the heterogeneous nucleation effect and induction time of slag was proposed, with which the model effectively quantifies the contributions of slag to the hydration, energy exchange and mass conversation within blended systems. This paper provides a thorough documentation of input parameters, fundamental equations, and constitutive laws associated with the model. The hydro-thermo-chemo-mechanical model successfully predicts the heat release, hydration degrees of cement and slag, self-desiccation, basic creep and autogenous shrinkage in slag-blended cementitious systems. The predictions align well with the experimental observation obtained from this work and reported works in the literature, validating the accuracy and reliability of the proposed model in capturing and explaining the complex early-age behaviors of slag-blended cementitious systems.

矿渣掺合水泥基体系早期龄期的水-热-化学-力学模型
本研究提出了一种用于预测矿渣掺合料胶凝体系早期龄期性能发展的综合水-热-化学-力学模型。该模型有效地量化了矿渣对掺合料体系内水化、能量交换和质量对话的贡献。本文全面记录了与模型相关的输入参数、基本方程和构成法则。水-热-化学-力学模型成功地预测了矿渣掺合料胶凝体系中的热释放、水泥和矿渣的水化程度、自干燥、基本蠕变和自生收缩。预测结果与本研究获得的实验观察结果以及文献报道的结果非常吻合,验证了所提出的模型在捕捉和解释矿渣掺合水泥基体系复杂的早期龄期行为方面的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信