{"title":"Set partitions, tableaux, and subspace profiles under regular diagonal matrices","authors":"Amritanshu Prasad , Samrith Ram","doi":"10.1016/j.ejc.2024.104060","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a family of univariate polynomials indexed by integer partitions. At prime powers, they count the number of subspaces in a finite vector space that transform under a regular diagonal matrix in a specified manner. This enumeration formula is a combinatorial solution to a problem introduced by Bender, Coley, Robbins and Rumsey. At 1, they count set partitions with specified block sizes. At 0, they count standard tableaux of specified shape. At <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>, they count standard shifted tableaux of a specified shape. These polynomials are generated by a new statistic on set partitions (called the interlacing number) as well as a polynomial statistic on standard tableaux. They allow us to express <span><math><mi>q</mi></math></span>-Stirling numbers of the second kind as sums over standard tableaux and as sums over set partitions.</p><p>For partitions whose parts are at most two, these polynomials are the non-zero entries of the Catalan triangle associated to the <span><math><mi>q</mi></math></span>-Hermite orthogonal polynomial sequence. In particular, when all parts are equal to two, they coincide with the polynomials defined by Touchard that enumerate chord diagrams by the number of crossings.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104060"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a family of univariate polynomials indexed by integer partitions. At prime powers, they count the number of subspaces in a finite vector space that transform under a regular diagonal matrix in a specified manner. This enumeration formula is a combinatorial solution to a problem introduced by Bender, Coley, Robbins and Rumsey. At 1, they count set partitions with specified block sizes. At 0, they count standard tableaux of specified shape. At , they count standard shifted tableaux of a specified shape. These polynomials are generated by a new statistic on set partitions (called the interlacing number) as well as a polynomial statistic on standard tableaux. They allow us to express -Stirling numbers of the second kind as sums over standard tableaux and as sums over set partitions.
For partitions whose parts are at most two, these polynomials are the non-zero entries of the Catalan triangle associated to the -Hermite orthogonal polynomial sequence. In particular, when all parts are equal to two, they coincide with the polynomials defined by Touchard that enumerate chord diagrams by the number of crossings.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.