Exact solution for a discrete-time SIR model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Márcia Lemos-Silva , Sandra Vaz , Delfim F.M. Torres
{"title":"Exact solution for a discrete-time SIR model","authors":"Márcia Lemos-Silva ,&nbsp;Sandra Vaz ,&nbsp;Delfim F.M. Torres","doi":"10.1016/j.apnum.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a nonstandard finite difference scheme for the Susceptible–Infected–Removed (SIR) continuous model. We prove that our discretized system is dynamically consistent with its continuous counterpart and we derive its exact solution. We end with the analysis of the long-term behavior of susceptible, infected and removed individuals, illustrating our results with examples. In contrast with the SIR discrete-time model available in the literature, our new model is simultaneously mathematically and biologically sound.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002514/pdfft?md5=59d392bacfd7e04cd930aa9196f19ec9&pid=1-s2.0-S0168927424002514-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a nonstandard finite difference scheme for the Susceptible–Infected–Removed (SIR) continuous model. We prove that our discretized system is dynamically consistent with its continuous counterpart and we derive its exact solution. We end with the analysis of the long-term behavior of susceptible, infected and removed individuals, illustrating our results with examples. In contrast with the SIR discrete-time model available in the literature, our new model is simultaneously mathematically and biologically sound.

离散时间 SIR 模型的精确解
我们针对易感-感染-清除(SIR)连续模型提出了一种非标准有限差分方案。我们证明了离散化系统与其连续对应系统在动态上是一致的,并推导出其精确解。最后,我们分析了易感个体、受感染个体和被移除个体的长期行为,并举例说明了我们的结果。与现有文献中的 SIR 离散时模型相比,我们的新模型在数学和生物学上都是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信