{"title":"A comparative study on numerical methods for Fredholm integro-differential equations of convection-diffusion problem with integral boundary conditions","authors":"Sekar Elango , L. Govindarao , R. Vadivel","doi":"10.1016/j.apnum.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper numerically solves Fredholm integro-differential equations with small parameters and integral boundary conditions. The solution of these equations has a boundary layer at the right boundary. A central difference scheme approximates the second-order derivative, a backward difference (upwind scheme) approximates the first-order derivative, and the trapezoidal rule is used for the integral term with a Shishkin mesh. It is shown that theoretically, the proposed scheme is uniformly convergent with almost first-order convergence. Further to improve the order of convergence from first order to second order, we use the post-processing and the hybrid scheme. Two numerical examples are computed to support the theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper numerically solves Fredholm integro-differential equations with small parameters and integral boundary conditions. The solution of these equations has a boundary layer at the right boundary. A central difference scheme approximates the second-order derivative, a backward difference (upwind scheme) approximates the first-order derivative, and the trapezoidal rule is used for the integral term with a Shishkin mesh. It is shown that theoretically, the proposed scheme is uniformly convergent with almost first-order convergence. Further to improve the order of convergence from first order to second order, we use the post-processing and the hybrid scheme. Two numerical examples are computed to support the theoretical results.