Optimally truncated WKB approximation for the 1D stationary Schrödinger equation in the highly oscillatory regime

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anton Arnold , Christian Klein , Jannis Körner , Jens Markus Melenk
{"title":"Optimally truncated WKB approximation for the 1D stationary Schrödinger equation in the highly oscillatory regime","authors":"Anton Arnold ,&nbsp;Christian Klein ,&nbsp;Jannis Körner ,&nbsp;Jens Markus Melenk","doi":"10.1016/j.cam.2024.116240","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to the efficient numerical computation of solutions to the 1D stationary Schrödinger equation in the highly oscillatory regime. We compute an approximate solution based on the well-known WKB-ansatz, which relies on an asymptotic expansion w.r.t. the small parameter <span><math><mi>ɛ</mi></math></span>. Assuming that the coefficient in the equation is analytic, we derive an explicit error estimate for the truncated WKB series, in terms of <span><math><mi>ɛ</mi></math></span> and the truncation order <span><math><mi>N</mi></math></span>. For any fixed <span><math><mi>ɛ</mi></math></span>, this allows to determine the optimal truncation order <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></math></span> which turns out to be proportional to <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. When chosen this way, the resulting error of the <em>optimally truncated WKB series</em> behaves like <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>exp</mo><mrow><mo>(</mo><mo>−</mo><mi>r</mi><mo>/</mo><mi>ɛ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, with some parameter <span><math><mrow><mi>r</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The theoretical results established in this paper are confirmed by several numerical examples.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377042724004898/pdfft?md5=b367dd13defd0d765ca9dc46c8dba156&pid=1-s2.0-S0377042724004898-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to the efficient numerical computation of solutions to the 1D stationary Schrödinger equation in the highly oscillatory regime. We compute an approximate solution based on the well-known WKB-ansatz, which relies on an asymptotic expansion w.r.t. the small parameter ɛ. Assuming that the coefficient in the equation is analytic, we derive an explicit error estimate for the truncated WKB series, in terms of ɛ and the truncation order N. For any fixed ɛ, this allows to determine the optimal truncation order Nopt which turns out to be proportional to ɛ1. When chosen this way, the resulting error of the optimally truncated WKB series behaves like O(exp(r/ɛ)), with some parameter r>0. The theoretical results established in this paper are confirmed by several numerical examples.

高度振荡状态下一维静态薛定谔方程的最佳截断 WKB 近似值
本文致力于高效数值计算一维静态薛定谔方程在高度振荡机制下的解。我们基于著名的 WKB-ansatz 计算近似解,它依赖于小参数 ɛ 的渐近展开。假定方程中的系数是解析的,我们可以根据ɛ 和截断阶数 N 求出截断 WKB 序列的显式误差估计值。这样选择时,最优截断 WKB 序列的误差表现为 O(exp(-r/ɛ)),某个参数 r>0。本文建立的理论结果得到了几个数值实例的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信