A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Joël Chaskalovic , Franck Assous
{"title":"A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates","authors":"Joël Chaskalovic ,&nbsp;Franck Assous","doi":"10.1016/j.cam.2024.116274","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to derive a refined first-order expansion formula in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at n+1 equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.

Rn 中的精炼一阶扩展公式:应用于插值和有限元误差估计
本文旨在推导出 Rn 中的精炼一阶展开公式,目的是获得与通常的泰勒公式相比最优的缩减余数。对于给定函数,我们通过引入在 n+1 个等间距点计算的一阶导数的线性组合,得到了推导出的公式。我们展示了如何将此公式应用于两个重要的应用领域:插值误差和有限元误差估计。在这两种情况下,我们都说明了在哪些条件下可以显著改善误差,即使用细化展开如何降低误差估计的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信