{"title":"Experimental investigation and thermodynamic modeling for isobaric heat capacity of ethanol at elevated temperatures and pressures","authors":"Lingyan Gui , Jian Yang , Jiangtao Wu , Xianyang Meng","doi":"10.1016/j.tca.2024.179865","DOIUrl":null,"url":null,"abstract":"<div><p>Ethanol is a promising sustainable fuel for its environmental friendliness and renewability. Due to the association effect in ethanol molecules, the particular behavior in isobaric heat capacity was explored by combining experimental and theoretical methods. Experimental isobaric heat capacity measurements of ethanol were performed over the temperature range from (298.15 to 573.15) K and at pressures up to 15 MPa in both liquid and vapor phases by a flow calorimeter. Different association schemes were combined respectively with PC-SAFT equation of state and SAFT-VR Mie equation of state to compare their accuracy in isobaric heat capacity prediction, and it could be concluded that two-site (2B) model was better than three-site (3B) model. It was also found that PC-SAFT equation of state was able to yield good results in predicting the isobaric heat capacity far from the saturated state and critical region, however, SAFT-VR Mie equation of state showed better prediction performance near the saturated state and critical region.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124002041","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethanol is a promising sustainable fuel for its environmental friendliness and renewability. Due to the association effect in ethanol molecules, the particular behavior in isobaric heat capacity was explored by combining experimental and theoretical methods. Experimental isobaric heat capacity measurements of ethanol were performed over the temperature range from (298.15 to 573.15) K and at pressures up to 15 MPa in both liquid and vapor phases by a flow calorimeter. Different association schemes were combined respectively with PC-SAFT equation of state and SAFT-VR Mie equation of state to compare their accuracy in isobaric heat capacity prediction, and it could be concluded that two-site (2B) model was better than three-site (3B) model. It was also found that PC-SAFT equation of state was able to yield good results in predicting the isobaric heat capacity far from the saturated state and critical region, however, SAFT-VR Mie equation of state showed better prediction performance near the saturated state and critical region.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes