{"title":"The four-components link invariant in the framework of topological field theories","authors":"M. Anda , E. Fuenmayor , L. Leal , E. Contreras","doi":"10.1016/j.aop.2024.169804","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we undertake a perturbative analysis of the topological non-Abelian Chern–Simons-Wong model with the aim to explicitly construct the second-order on-shell action. The resulting action is a topological quantity depending solely on closed curves, so it correspond to an analytical expression of a link invariant. Additionally, we construct an Abelian model that reproduces the same second-order on-shell action as its non-Abelian Chern–Simons-Wong counterpart so it functions as an intermediate model, featuring Abelian fields generated by currents supported on closed paths. By geometrically analyzing each term, we demonstrate that this topological invariant effectively detects the knotting of a four-component link.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169804"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002112","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we undertake a perturbative analysis of the topological non-Abelian Chern–Simons-Wong model with the aim to explicitly construct the second-order on-shell action. The resulting action is a topological quantity depending solely on closed curves, so it correspond to an analytical expression of a link invariant. Additionally, we construct an Abelian model that reproduces the same second-order on-shell action as its non-Abelian Chern–Simons-Wong counterpart so it functions as an intermediate model, featuring Abelian fields generated by currents supported on closed paths. By geometrically analyzing each term, we demonstrate that this topological invariant effectively detects the knotting of a four-component link.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.