Fansheng Kong , Yan Xu , Hua Du , Yuanyuan He , Chuanfeng Zheng
{"title":"Spatio-temporal evolution of water erosion in the western Songnen Plain: Analysis of its response to land use dynamics and climate change","authors":"Fansheng Kong , Yan Xu , Hua Du , Yuanyuan He , Chuanfeng Zheng","doi":"10.1016/j.still.2024.106299","DOIUrl":null,"url":null,"abstract":"<div><p>Preventing water erosion is crucial for maintaining ecosystems and ensuring food security, necessitating a comprehensive understanding of the spatial and temporal patterns of water erosion and its underlying drivers. In the context of global warming, analyzing the impacts of land use dynamics and climate change on water erosion contributes to effective land management and sustainability of both industry and agriculture. This study aims to analyze the spatial distribution of water erosion in the western Songnen Plain from 1990 to 2020 using the Revised Universal Soil Loss Equation (RUSLE), with a focus on assessing the impacts of land use and climate on water erosion. The results revealed a 7.1 % increase in the area experiencing water erosion above light levels in the western Songnen Plain. The hotspots for water erosion were located in the southeast and northwest of the study area. The rapid expansion of farmland and land salinization, leading to reduced vegetation cover and soil property deterioration, were the main causes of intensified water erosion in the region before 2000. Although water erosion was slightly alleviated after 2000, the further expansion of farmland, the worsened water erosion intensity in alkaline land and frequent extreme weather still posed serious threats to water erosion in the study area. Water erosion was positively correlated with temperature and dry/wet alternation events, including frequency, duration, and severity. In addition, land use type was the main factor influencing the heterogeneous distribution of water erosion in the western Songnen Plain, whose interaction with dry/wet alternation events had the strongest explanatory power. Therefore, this study calls for the implementation of soil and water conservation measures to mitigate the impacts of land cultivation, salinization, and climate change on water erosion.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106299"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167198724003003/pdfft?md5=c026b0eb7281693f3d9c28ec5b77b6f9&pid=1-s2.0-S0167198724003003-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003003","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Preventing water erosion is crucial for maintaining ecosystems and ensuring food security, necessitating a comprehensive understanding of the spatial and temporal patterns of water erosion and its underlying drivers. In the context of global warming, analyzing the impacts of land use dynamics and climate change on water erosion contributes to effective land management and sustainability of both industry and agriculture. This study aims to analyze the spatial distribution of water erosion in the western Songnen Plain from 1990 to 2020 using the Revised Universal Soil Loss Equation (RUSLE), with a focus on assessing the impacts of land use and climate on water erosion. The results revealed a 7.1 % increase in the area experiencing water erosion above light levels in the western Songnen Plain. The hotspots for water erosion were located in the southeast and northwest of the study area. The rapid expansion of farmland and land salinization, leading to reduced vegetation cover and soil property deterioration, were the main causes of intensified water erosion in the region before 2000. Although water erosion was slightly alleviated after 2000, the further expansion of farmland, the worsened water erosion intensity in alkaline land and frequent extreme weather still posed serious threats to water erosion in the study area. Water erosion was positively correlated with temperature and dry/wet alternation events, including frequency, duration, and severity. In addition, land use type was the main factor influencing the heterogeneous distribution of water erosion in the western Songnen Plain, whose interaction with dry/wet alternation events had the strongest explanatory power. Therefore, this study calls for the implementation of soil and water conservation measures to mitigate the impacts of land cultivation, salinization, and climate change on water erosion.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.