Yulun Zhang , Yicun Yao , Liqiang Zhang , Fan Zhang , Zhaogang Nie , Minghong Wang
{"title":"Research on vector bending sensors based on taper-drawn seven-core fiber Bragg grating","authors":"Yulun Zhang , Yicun Yao , Liqiang Zhang , Fan Zhang , Zhaogang Nie , Minghong Wang","doi":"10.1016/j.yofte.2024.103975","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel vector bending sensor that enables simultaneous measurement of the bending response in six outer cores of a seven-core fiber (SCF) without the need for fan-in/fan-out configurations. Utilizing femtosecond laser technology, we inscribe seven Fiber Bragg Gratings (FBGs) with distinct wavelengths across the SCF cores. The sensor’s tapering process, tailored for the bending sensing scenario, effectively combines the reflection peaks of the FBGs into one detection channel, thereby substantially improving the measurement efficiency. Our experimental results demonstrate a strong directional dependence of the bending response, with a maximum sensitivity of 127 pm/m<sup>−1</sup>. The bending angle and curvature magnitude are reconstructed by analyzing the wavelength shifts of any two non-diagonal outer cores, offering a versatile solution for real-time monitoring applications. This sensor design, by eliminating the need for additional fan-in/fan-out devices, simplifies the system architecture and reduces both measurement time and sensor size, making it highly suitable for applications in precision manufacturing, environmental monitoring, and robotics.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 103975"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003201","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel vector bending sensor that enables simultaneous measurement of the bending response in six outer cores of a seven-core fiber (SCF) without the need for fan-in/fan-out configurations. Utilizing femtosecond laser technology, we inscribe seven Fiber Bragg Gratings (FBGs) with distinct wavelengths across the SCF cores. The sensor’s tapering process, tailored for the bending sensing scenario, effectively combines the reflection peaks of the FBGs into one detection channel, thereby substantially improving the measurement efficiency. Our experimental results demonstrate a strong directional dependence of the bending response, with a maximum sensitivity of 127 pm/m−1. The bending angle and curvature magnitude are reconstructed by analyzing the wavelength shifts of any two non-diagonal outer cores, offering a versatile solution for real-time monitoring applications. This sensor design, by eliminating the need for additional fan-in/fan-out devices, simplifies the system architecture and reduces both measurement time and sensor size, making it highly suitable for applications in precision manufacturing, environmental monitoring, and robotics.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.