Xiangbo Zeng , Zhiliang Chen , Yuanchao Zhu , Lei Liu , Zhiyong Zhang , Yongyuan Xiao , Qiong Wang , Shiyu Pang , Fengjin Zhao , Bihong Xu , Mengxin Leng , Xiaocen Liu , Chenxi Hu , Siying Zeng , Fei Li , Wenlian Xie , Wanlong Tan , Zaosong Zheng
{"title":"O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma","authors":"Xiangbo Zeng , Zhiliang Chen , Yuanchao Zhu , Lei Liu , Zhiyong Zhang , Yongyuan Xiao , Qiong Wang , Shiyu Pang , Fengjin Zhao , Bihong Xu , Mengxin Leng , Xiaocen Liu , Chenxi Hu , Siying Zeng , Fei Li , Wenlian Xie , Wanlong Tan , Zaosong Zheng","doi":"10.1016/j.drup.2024.101150","DOIUrl":null,"url":null,"abstract":"<div><p>Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser<sup>331</sup>, Ser<sup>440</sup> and Ser<sup>669</sup> regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC.</p><p>Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101150"},"PeriodicalIF":15.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764624001080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser331, Ser440 and Ser669 regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC.
Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research