{"title":"Integrated electrical silicon interconnects for short-range high-speed millimeter-wave and terahertz communications","authors":"Zhihong Lin , Shiqi Chen , Yuan Liang , Lin Peng","doi":"10.1016/j.vlsi.2024.102267","DOIUrl":null,"url":null,"abstract":"<div><p>—Millimeter-wave and terahertz interconnects implemented in advanced complementary metal oxide semiconductor (CMOS) technologies have emerged as promising solutions to fix the issues encountered by baseband interconnects and optical interconnects across specific communication ranges. Over the last decade, significant attempts to advance millimeter-wave and terahertz electronics and platforms have been made. Notably, there have been ground-breaking advancements in active components, including modulation techniques, low-noise receivers, efficient and high-output-power signal generators, and high-frequency clock synthesizers. Nevertheless, since energy efficiency is of paramount importance for interconnect applications, it is necessary to prioritize efficiency enhancements over improvements in signal power, signal integrity and noise related performance. Strategies to improve system output power and phase noise as well as strategies to reduce channel loss and channel electromagnetic crosstalk should leverage alternative approaches, such as architectural optimizations and array configurations, rather than prioritizing energy efficiency. As such, the progression of passive channel technology is equally vital. While reducing channel insertion loss is essential for extending communication reach, channel dispersion and crosstalk limitations at the interface level present critical challenges to achieving optimal bandwidth over distances of up to a few meters. This underscores the need for a balanced focus on both active and passive component innovations to fully harness the potential of millimeter-wave and terahertz interconnects in overcoming the limitations of current CMOS technologies.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102267"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
—Millimeter-wave and terahertz interconnects implemented in advanced complementary metal oxide semiconductor (CMOS) technologies have emerged as promising solutions to fix the issues encountered by baseband interconnects and optical interconnects across specific communication ranges. Over the last decade, significant attempts to advance millimeter-wave and terahertz electronics and platforms have been made. Notably, there have been ground-breaking advancements in active components, including modulation techniques, low-noise receivers, efficient and high-output-power signal generators, and high-frequency clock synthesizers. Nevertheless, since energy efficiency is of paramount importance for interconnect applications, it is necessary to prioritize efficiency enhancements over improvements in signal power, signal integrity and noise related performance. Strategies to improve system output power and phase noise as well as strategies to reduce channel loss and channel electromagnetic crosstalk should leverage alternative approaches, such as architectural optimizations and array configurations, rather than prioritizing energy efficiency. As such, the progression of passive channel technology is equally vital. While reducing channel insertion loss is essential for extending communication reach, channel dispersion and crosstalk limitations at the interface level present critical challenges to achieving optimal bandwidth over distances of up to a few meters. This underscores the need for a balanced focus on both active and passive component innovations to fully harness the potential of millimeter-wave and terahertz interconnects in overcoming the limitations of current CMOS technologies.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.