Why Is Reducing the Dead Zone in the Gulf of Mexico Such a Complex Goal? Understanding the Structure That Drives Hypoxic Zone Formation via System Dynamics

IF 2.3 4区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Systems Pub Date : 2024-08-26 DOI:10.3390/systems12090326
Luis Mier-Valderrama, Jorge Ledezma, Karl Gibson, Ambrose Anoruo, Benjamin Turner
{"title":"Why Is Reducing the Dead Zone in the Gulf of Mexico Such a Complex Goal? Understanding the Structure That Drives Hypoxic Zone Formation via System Dynamics","authors":"Luis Mier-Valderrama, Jorge Ledezma, Karl Gibson, Ambrose Anoruo, Benjamin Turner","doi":"10.3390/systems12090326","DOIUrl":null,"url":null,"abstract":"The Northern Gulf of Mexico hosts a severe dead zone, an oxygen-depleted area spanning 1,618,000 hectares, threatening over 40% of the U.S. fishing industry and causing annual losses of USD 82 million. Using a System Dynamics (SD) approach, this study examined the Mississippi–Atchafalay nd a River Basin (MARB), a major contributor to hypoxia in the Gulf. A dynamic model, developed with Vensim software version 10.2.1 andexisting data, represented the physical, biological, and chemical processes leading to eutrophication and simulated dead zone formation over time. Various policies were assessed, considering natural system variability. The findings showed that focusing solely on nitrogen control reduced the dead zone but required greater intensity or managing other inputs to meet environmental goals. Runoff control policies delayed nutrient discharge but did not significantly alter long-term outcomes. Extreme condition tests highlighted the critical role of runoff dynamics, dependent on nitrogen load relative to flow volume from upstream. The model suggests interventions should not just reduce eutrophication inputs but enhance factors slowing down the process, allowing natural denitrification to override anthropogenic nitrification.","PeriodicalId":36394,"journal":{"name":"Systems","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.3390/systems12090326","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Northern Gulf of Mexico hosts a severe dead zone, an oxygen-depleted area spanning 1,618,000 hectares, threatening over 40% of the U.S. fishing industry and causing annual losses of USD 82 million. Using a System Dynamics (SD) approach, this study examined the Mississippi–Atchafalay nd a River Basin (MARB), a major contributor to hypoxia in the Gulf. A dynamic model, developed with Vensim software version 10.2.1 andexisting data, represented the physical, biological, and chemical processes leading to eutrophication and simulated dead zone formation over time. Various policies were assessed, considering natural system variability. The findings showed that focusing solely on nitrogen control reduced the dead zone but required greater intensity or managing other inputs to meet environmental goals. Runoff control policies delayed nutrient discharge but did not significantly alter long-term outcomes. Extreme condition tests highlighted the critical role of runoff dynamics, dependent on nitrogen load relative to flow volume from upstream. The model suggests interventions should not just reduce eutrophication inputs but enhance factors slowing down the process, allowing natural denitrification to override anthropogenic nitrification.
为什么减少墨西哥湾的死亡区是一个如此复杂的目标?通过系统动力学了解驱动缺氧区形成的结构
墨西哥湾北部是一个严重的死亡区,缺氧面积达 161.8 万公顷,威胁着美国 40% 以上的渔业,每年造成的损失达 8200 万美元。本研究采用系统动力学(SD)方法,考察了密西西比-阿特查法莱河流域(MARB),该流域是造成墨西哥湾缺氧的主要原因。使用 Vensim 软件 10.2.1 版和现有数据开发的动态模型表示了导致富营养化的物理、生物和化学过程,并模拟了随着时间推移而形成的死亡区。考虑到自然系统的可变性,对各种政策进行了评估。研究结果表明,只注重氮控制会减少死亡区,但需要加大力度或管理其他投入才能实现环境目标。径流控制政策延迟了营养物质的排放,但并未显著改变长期结果。极端条件测试强调了径流动态的关键作用,这取决于氮负荷与上游流量的关系。该模型表明,干预措施不仅要减少富营养化的输入,还要加强减缓富营养化过程的因素,使自然反硝化作用超过人为硝化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems
Systems Decision Sciences-Information Systems and Management
CiteScore
2.80
自引率
15.80%
发文量
204
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信