Deep learning assisted quantitative detection of cardiac troponin I in hierarchical dendritic copper–nickel nanostructure lateral flow immunoassay†

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Shenglan Zhang, Liqiang Chen, YuXin Tan, Shaojie Wu, Pengxin Guo, Xincheng Jiang and Hongcheng Pan
{"title":"Deep learning assisted quantitative detection of cardiac troponin I in hierarchical dendritic copper–nickel nanostructure lateral flow immunoassay†","authors":"Shenglan Zhang, Liqiang Chen, YuXin Tan, Shaojie Wu, Pengxin Guo, Xincheng Jiang and Hongcheng Pan","doi":"10.1039/D4AY01187B","DOIUrl":null,"url":null,"abstract":"<p >The rising demand for point-of-care testing (POCT) in disease diagnosis has made LFIA sensors based on dendritic metal thin film (HD-nanometal) and background fluorescence technology essential for rapid and accurate disease marker detection, thanks to their integrated design, high sensitivity, and cost-effectiveness. However, their unique 3D nanostructures cause significant fluorescence variation, challenging traditional image processing methods in segmenting weak fluorescence regions. This paper develops a deep learning method to efficiently segment target regions in HD-nanometal LFIA sensor images, improving quantitative detection accuracy. We propose an improved UNet++ network with attention and residual modules, accurately segmenting varying fluorescence intensities, especially weak ones. We evaluated the method using IoU and Dice coefficients, comparing it with UNet, Deeplabv3, and UNet++. We used an HD-nanoCu-Ni LFIA sensor for cardiac troponin I (cTnI) as a case study to validate the method's practicality. The proposed method achieved a 96.3% IoU, outperforming other networks. The <em>R</em><small><sup>2</sup></small> between characteristic quantity and cTnI concentration reached 0.994, confirming the method's accuracy and reliability. This enhances POCT accuracy and provides a reference for future fluorescence immunochromatography expansion.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay01187b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising demand for point-of-care testing (POCT) in disease diagnosis has made LFIA sensors based on dendritic metal thin film (HD-nanometal) and background fluorescence technology essential for rapid and accurate disease marker detection, thanks to their integrated design, high sensitivity, and cost-effectiveness. However, their unique 3D nanostructures cause significant fluorescence variation, challenging traditional image processing methods in segmenting weak fluorescence regions. This paper develops a deep learning method to efficiently segment target regions in HD-nanometal LFIA sensor images, improving quantitative detection accuracy. We propose an improved UNet++ network with attention and residual modules, accurately segmenting varying fluorescence intensities, especially weak ones. We evaluated the method using IoU and Dice coefficients, comparing it with UNet, Deeplabv3, and UNet++. We used an HD-nanoCu-Ni LFIA sensor for cardiac troponin I (cTnI) as a case study to validate the method's practicality. The proposed method achieved a 96.3% IoU, outperforming other networks. The R2 between characteristic quantity and cTnI concentration reached 0.994, confirming the method's accuracy and reliability. This enhances POCT accuracy and provides a reference for future fluorescence immunochromatography expansion.

Abstract Image

Abstract Image

深度学习辅助分层树枝状铜镍纳米结构横向流动免疫分析法定量检测心肌肌钙蛋白 I
疾病诊断中对床旁检测(POCT)的需求不断增加,基于树枝状金属薄膜(HD-纳米金属)和背景荧光技术的 LFIA 传感器凭借其集成设计、高灵敏度和成本效益,成为快速准确检测疾病标记物的关键。然而,它们独特的三维纳米结构会导致显著的荧光变化,这对传统的图像处理方法分割弱荧光区域提出了挑战。本文开发了一种深度学习方法,可有效分割高清纳米金属 LFIA 传感器图像中的目标区域,提高定量检测的准确性。我们提出了一种带有注意力和残差模块的改进型 UNet++ 网络,能准确分割不同的荧光强度,尤其是弱荧光强度。我们使用 IoU 和 Dice 系数对该方法进行了评估,并与 UNet、Deeplabv3 和 UNet++ 进行了比较。我们使用 HD-nanoCu-Ni LFIA 传感器检测心肌肌钙蛋白 I (cTnI)作为案例研究,以验证该方法的实用性。所提出的方法达到了 96.3% 的 IoU,优于其他网络。特征量与 cTnI 浓度之间的 R2 达到 0.994,证实了该方法的准确性和可靠性。这提高了 POCT 的准确性,并为未来荧光免疫层析技术的扩展提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信