{"title":"Exploring transformer models for sentiment classification: A comparison of BERT, RoBERTa, ALBERT, DistilBERT, and XLNet","authors":"Ali Areshey, Hassan Mathkour","doi":"10.1111/exsy.13701","DOIUrl":null,"url":null,"abstract":"<p>Transfer learning models have proven superior to classical machine learning approaches in various text classification tasks, such as sentiment analysis, question answering, news categorization, and natural language inference. Recently, these models have shown exceptional results in natural language understanding (NLU). Advanced attention-based language models like BERT and XLNet excel at handling complex tasks across diverse contexts. However, they encounter difficulties when applied to specific domains. Platforms like Facebook, characterized by continually evolving casual and sophisticated language, demand meticulous context analysis even from human users. The literature has proposed numerous solutions using statistical and machine learning techniques to predict the sentiment (positive or negative) of online customer reviews, but most of them rely on various business, review, and reviewer features, which leads to generalizability issues. Furthermore, there have been very few studies investigating the effectiveness of state-of-the-art pre-trained language models for sentiment classification in reviews. Therefore, this study aims to assess the effectiveness of BERT, RoBERTa, ALBERT, DistilBERT, and XLNet in sentiment classification using the Yelp reviews dataset. The models were fine-tuned, and the results obtained with the same hyperparameters are as follows: 98.30 for RoBERTa, 98.20 for XLNet, 97.40 for BERT, 97.20 for ALBERT, and 96.00 for DistilBERT.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13701","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer learning models have proven superior to classical machine learning approaches in various text classification tasks, such as sentiment analysis, question answering, news categorization, and natural language inference. Recently, these models have shown exceptional results in natural language understanding (NLU). Advanced attention-based language models like BERT and XLNet excel at handling complex tasks across diverse contexts. However, they encounter difficulties when applied to specific domains. Platforms like Facebook, characterized by continually evolving casual and sophisticated language, demand meticulous context analysis even from human users. The literature has proposed numerous solutions using statistical and machine learning techniques to predict the sentiment (positive or negative) of online customer reviews, but most of them rely on various business, review, and reviewer features, which leads to generalizability issues. Furthermore, there have been very few studies investigating the effectiveness of state-of-the-art pre-trained language models for sentiment classification in reviews. Therefore, this study aims to assess the effectiveness of BERT, RoBERTa, ALBERT, DistilBERT, and XLNet in sentiment classification using the Yelp reviews dataset. The models were fine-tuned, and the results obtained with the same hyperparameters are as follows: 98.30 for RoBERTa, 98.20 for XLNet, 97.40 for BERT, 97.20 for ALBERT, and 96.00 for DistilBERT.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.