{"title":"CATcAFSMs: Context‐based adaptive trust calculation for attack detection in fog computing based smart medical systems","authors":"Alishba Nawaz, Waseem Iqbal, Ayesha Altaf, Abrar Almjally, Hatoon AlSagri, Bayan Alabdullah","doi":"10.1111/exsy.13687","DOIUrl":null,"url":null,"abstract":"Fog's basic distributed nature and ability to process data in transit—that is, to make decisions in real time—make it a good fit for scenarios involving several distributed devices that need to communicate, provide real‐time data analysis, and carry out storage functions. The majority of fog computing applications are driven by the user's demands and/or their desire for functioning services, either neglecting or giving security considerations second attention. Fog computing security issues have not received enough attention. Fog computing could be exploitable due to the security difficulties associated with cloud computing. Due to its flexibility to function near the end user and independence from a centralized design, fog computing provides the dependability required by time‐sensitive smart healthcare systems. There is a need for enhanced security and privacy solutions for fog computing, where trust is essential, due to the importance of healthcare data. This research aims to develop a context‐based adaptive trust solution for the smart healthcare environment utilizing Bayesian approaches and similarity measures against bad mouthing and ballot stuffing, while context‐dependent trust solutions for fogs remain an unexplored area of study. The proposed trust model has been simulated in Contiki‐Cooja to evaluate our findings. In contrast to static weighting, adaptive weights are provided to direct and indirect trust using entropy values that ensure the least degree of trust bias, and context similarity calculations eliminate recommender nodes with malicious intent by leveraging server, colleague, and service similarities. The proposed model protects smart healthcare systems from attacks using similarity metrics, incorporates context, and also uses adaptive weighting for trust calculation. By eliminating trust bias and also detecting attacks, this solution enhances the trust calculation by 10% as compared to the previous solution. This paradigm is efficient due to its small trust computation overhead and linear complexity <jats:italic>O</jats:italic>(<jats:italic>n</jats:italic>).","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"2 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13687","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fog's basic distributed nature and ability to process data in transit—that is, to make decisions in real time—make it a good fit for scenarios involving several distributed devices that need to communicate, provide real‐time data analysis, and carry out storage functions. The majority of fog computing applications are driven by the user's demands and/or their desire for functioning services, either neglecting or giving security considerations second attention. Fog computing security issues have not received enough attention. Fog computing could be exploitable due to the security difficulties associated with cloud computing. Due to its flexibility to function near the end user and independence from a centralized design, fog computing provides the dependability required by time‐sensitive smart healthcare systems. There is a need for enhanced security and privacy solutions for fog computing, where trust is essential, due to the importance of healthcare data. This research aims to develop a context‐based adaptive trust solution for the smart healthcare environment utilizing Bayesian approaches and similarity measures against bad mouthing and ballot stuffing, while context‐dependent trust solutions for fogs remain an unexplored area of study. The proposed trust model has been simulated in Contiki‐Cooja to evaluate our findings. In contrast to static weighting, adaptive weights are provided to direct and indirect trust using entropy values that ensure the least degree of trust bias, and context similarity calculations eliminate recommender nodes with malicious intent by leveraging server, colleague, and service similarities. The proposed model protects smart healthcare systems from attacks using similarity metrics, incorporates context, and also uses adaptive weighting for trust calculation. By eliminating trust bias and also detecting attacks, this solution enhances the trust calculation by 10% as compared to the previous solution. This paradigm is efficient due to its small trust computation overhead and linear complexity O(n).
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.