Multi-Class Analysis of 57 Drugs Quantitatively in Blood and Qualitatively in Urine by LC-MS/MS to Complement Comprehensive DFC, DUID and Postmortem Testing
Luke N Rodda, Megan Farley, Steven Towler, Tyler Devincenzi, Sue Pearring
{"title":"Multi-Class Analysis of 57 Drugs Quantitatively in Blood and Qualitatively in Urine by LC-MS/MS to Complement Comprehensive DFC, DUID and Postmortem Testing","authors":"Luke N Rodda, Megan Farley, Steven Towler, Tyler Devincenzi, Sue Pearring","doi":"10.1093/jat/bkae077","DOIUrl":null,"url":null,"abstract":"A streamlined LC-MS/MS method utilizing protein precipitation and filtration extraction was developed to consolidate analyses for drug-facilitated crime (DFC), postmortem investigations, and driving under the influence of drugs (DUID) testing. Fifty-seven target drug and metabolite analytes eluted in under 6-minutes and compromised of GHB precursors (1), hallucinogens (3), muscle relaxants (3), anticonvulsants (7), antidepressants (20), antihistamines (5), antipsychotics (11), antihypertensives and alpha-adrenergics (3), analgesics and anesthetics (3), and miscellaneous (1) in blood (quantitatively) and urine (qualitatively). Limits of detection were set to meet the more challenging sensitivity requirements for DFC, and are therefore also suitable for postmortem investigations, and other forensic casework, including DUID. Comprehensive ASB/ANSI validation was performed, and applicability studies examined 72 proficiency test blood and urine samples, along with 9,206 unique blood and urines samples from 5,192 authentic forensic cases that resulted in 11,961 positive analytes in samples. By expanding the analytical reach across multiple drug classes through a unified approach and screening a wider number of drugs, the technique can identify substances that might have previously evaded detection, thereby enhancing laboratory efficiency by minimizing the need for multiple tests. When combined with a recently developed in-house method, this integrated testing strategy meets the testing requirements outlined in ASB/ANSI standards and recommendations for DFC, postmortem, and Tier 1 DUID analyses.","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":"3 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A streamlined LC-MS/MS method utilizing protein precipitation and filtration extraction was developed to consolidate analyses for drug-facilitated crime (DFC), postmortem investigations, and driving under the influence of drugs (DUID) testing. Fifty-seven target drug and metabolite analytes eluted in under 6-minutes and compromised of GHB precursors (1), hallucinogens (3), muscle relaxants (3), anticonvulsants (7), antidepressants (20), antihistamines (5), antipsychotics (11), antihypertensives and alpha-adrenergics (3), analgesics and anesthetics (3), and miscellaneous (1) in blood (quantitatively) and urine (qualitatively). Limits of detection were set to meet the more challenging sensitivity requirements for DFC, and are therefore also suitable for postmortem investigations, and other forensic casework, including DUID. Comprehensive ASB/ANSI validation was performed, and applicability studies examined 72 proficiency test blood and urine samples, along with 9,206 unique blood and urines samples from 5,192 authentic forensic cases that resulted in 11,961 positive analytes in samples. By expanding the analytical reach across multiple drug classes through a unified approach and screening a wider number of drugs, the technique can identify substances that might have previously evaded detection, thereby enhancing laboratory efficiency by minimizing the need for multiple tests. When combined with a recently developed in-house method, this integrated testing strategy meets the testing requirements outlined in ASB/ANSI standards and recommendations for DFC, postmortem, and Tier 1 DUID analyses.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.