Unconventional Photon Blockade in a Hybrid Optomechanical System with an Embedded Spin-Triplet

IF 4.4 Q1 OPTICS
Yao Dong, Jing-jing Wang, Guo-Feng Zhang
{"title":"Unconventional Photon Blockade in a Hybrid Optomechanical System with an Embedded Spin-Triplet","authors":"Yao Dong,&nbsp;Jing-jing Wang,&nbsp;Guo-Feng Zhang","doi":"10.1002/qute.202400232","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the unconventional photon blockade in a hybrid optomechanical system with an embedded spin-triplet state. The self-homodyning interference between squeezed quantum fluctuations produced by the emitter and the coherent fraction from the driving laser results in two-photon suppression. Analytical solutions of the correlator equation and numerical simulations of the master equation reveal that modulated mechanical dissipation plays a crucial role in achieving strong single-photon blockade. In contrast to conventional cavity optomechanical systems, a second-order correlation function of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>g</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <mo>≃</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$g^{(2)}(0)\\simeq 0$</annotation>\n </semantics></math> can be achieved with weak single-photon optomechanical coupling. By combining unconventional and conventional antibunching, the hybrid system achieves the convergence of maximal photon population, two-photon interference, and suppression of higher-order correlations. Additionally, the influence of the thermal noise on photon blockade is investigated, demonstrating greater robustness of the second-order correlation under weaker phonon-spin coupling.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the unconventional photon blockade in a hybrid optomechanical system with an embedded spin-triplet state. The self-homodyning interference between squeezed quantum fluctuations produced by the emitter and the coherent fraction from the driving laser results in two-photon suppression. Analytical solutions of the correlator equation and numerical simulations of the master equation reveal that modulated mechanical dissipation plays a crucial role in achieving strong single-photon blockade. In contrast to conventional cavity optomechanical systems, a second-order correlation function of g ( 2 ) ( 0 ) 0 $g^{(2)}(0)\simeq 0$ can be achieved with weak single-photon optomechanical coupling. By combining unconventional and conventional antibunching, the hybrid system achieves the convergence of maximal photon population, two-photon interference, and suppression of higher-order correlations. Additionally, the influence of the thermal noise on photon blockade is investigated, demonstrating greater robustness of the second-order correlation under weaker phonon-spin coupling.

Abstract Image

带有嵌入式自旋三重子的混合光机械系统中的非常规光子阻断技术
这项研究调查了具有嵌入式自旋三重态的混合光机械系统中的非常规光子阻滞。发射器产生的挤压量子波动与驱动激光器产生的相干分数之间的自同调干扰导致双光子抑制。相关器方程的分析解和主方程的数值模拟显示,调制机械耗散在实现强单光子阻断中起着至关重要的作用。与传统的腔体光机械系统相比,弱单光子光机械耦合可以实现二阶相关函数。通过结合非常规和常规反束,混合系统实现了最大光子群、双光子干扰和高阶相关性抑制的趋同。此外,还研究了热噪声对光子封锁的影响,证明在声子-自旋耦合较弱的情况下,二阶相关性具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信