Amandeep Kaur, Khalid Mujasam Batoo, Muhammad Farziq Ijaz, Sangeeta Sharma
{"title":"Synthesis and characterization of ZnO–NiO composites for efficient U(VI) scavenger","authors":"Amandeep Kaur, Khalid Mujasam Batoo, Muhammad Farziq Ijaz, Sangeeta Sharma","doi":"10.1007/s10967-024-09717-x","DOIUrl":null,"url":null,"abstract":"<div><p><sub><b>(</b>1-<i>x</i>)</sub>ZnO–<sub><i>x</i></sub>NiO nanocomposites (where <i>x</i> = 0.05, 0.10, 0.15 and 0.20) have been successfully synthesized using a mechanical mixing approach. Structural phase, morphological, and elemental composition analysis have been carried out using X-ray diffraction, scanning electron microscope, EDX, and XPS analysis. The systematic batch mode adsorption studies were carried out to evaluate the optimized adsorption behavior of synthesized nanocomposites (pH = 6; contact time = 90 min and adsorption dose = 0.5 g/L). Kinetic studies revealed that the prepared nanocomposite (<sub>0.80</sub>ZnO<sub>0.20</sub>NiO) successfully adsorbs U(VI) through a chemisorption nature with the maximum Langmuir capacity (~ 151.20 mg/g). The results demonstrated that the prepared <sub>0.80</sub>ZnO<sub>0.20</sub>NiO can be used as a packaging material for column units in water purifiers.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 1","pages":"251 - 261"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09717-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
(1-x)ZnO–xNiO nanocomposites (where x = 0.05, 0.10, 0.15 and 0.20) have been successfully synthesized using a mechanical mixing approach. Structural phase, morphological, and elemental composition analysis have been carried out using X-ray diffraction, scanning electron microscope, EDX, and XPS analysis. The systematic batch mode adsorption studies were carried out to evaluate the optimized adsorption behavior of synthesized nanocomposites (pH = 6; contact time = 90 min and adsorption dose = 0.5 g/L). Kinetic studies revealed that the prepared nanocomposite (0.80ZnO0.20NiO) successfully adsorbs U(VI) through a chemisorption nature with the maximum Langmuir capacity (~ 151.20 mg/g). The results demonstrated that the prepared 0.80ZnO0.20NiO can be used as a packaging material for column units in water purifiers.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.