{"title":"Liquid water transport mechanism inside fuel cells with orderly graded perforation microporous layer","authors":"Tao Jiang, Zhenqian Chen, Chaoling Han","doi":"10.1002/apj.3146","DOIUrl":null,"url":null,"abstract":"<p>This study aims to enhance the liquid water distribution within electrodes by innovatively designing a microporous layer (MPL) featuring orderly gradient perforations. Utilizing a multi-component multi-phase lattice Boltzmann model (LBM), which has been rigorously validated through contact angle measurements, Laplace pressure tests, grid independence checks, and comparisons with experimental data to ensure high predictive accuracy. The research systematically analyzes the governing liquid water transport in orderly gradient perforation MPLs. Leveraging this reliable modeling platform, the study conducts an exhaustive optimization analysis of gradient direction, gradation counts, and perforation geometry under constant porosity conditions. Findings reveal that negative gradient perforation designs significantly outperform positive gradient and conventional straight perforations, enhancing dry pore retention by at least 10.8%. Within the gradation counts, the ternary gradient structure further boosts channel retention by an additional minimum of 14.9% compared to quinary and continuous gradient structures. Moreover, cylindrical perforations demonstrate a substantial decrease surpassing spherical and square designs by at least 13.8% for liquid water saturation. Critically, the optimized model effectively inhibit the formation of saturation-induced blockages in localized thickness regions. In conclusion, the investigation offers a robust basis for advancing MPL design strategies, targeting improved electrochemical processes and battery performance.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to enhance the liquid water distribution within electrodes by innovatively designing a microporous layer (MPL) featuring orderly gradient perforations. Utilizing a multi-component multi-phase lattice Boltzmann model (LBM), which has been rigorously validated through contact angle measurements, Laplace pressure tests, grid independence checks, and comparisons with experimental data to ensure high predictive accuracy. The research systematically analyzes the governing liquid water transport in orderly gradient perforation MPLs. Leveraging this reliable modeling platform, the study conducts an exhaustive optimization analysis of gradient direction, gradation counts, and perforation geometry under constant porosity conditions. Findings reveal that negative gradient perforation designs significantly outperform positive gradient and conventional straight perforations, enhancing dry pore retention by at least 10.8%. Within the gradation counts, the ternary gradient structure further boosts channel retention by an additional minimum of 14.9% compared to quinary and continuous gradient structures. Moreover, cylindrical perforations demonstrate a substantial decrease surpassing spherical and square designs by at least 13.8% for liquid water saturation. Critically, the optimized model effectively inhibit the formation of saturation-induced blockages in localized thickness regions. In conclusion, the investigation offers a robust basis for advancing MPL design strategies, targeting improved electrochemical processes and battery performance.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).