Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu
{"title":"Numerical Simulation of CO Generation and Combustion Efficiency in Sintering Process: Effect of Solid Fuel Particle Size","authors":"Zhen Li, Yaozu Wang, Jianliang Zhang, Sida Li, Lele Niu, Zhengjian Liu, Hao Liu","doi":"10.1002/srin.202400094","DOIUrl":null,"url":null,"abstract":"For sintering pot productive process with various fuel particle size distributions, a transient numerical simulation sintering model based on the computational fluid dynamics approach is developed using Fluent 2021R1. The model combines chemical reaction, mass and heat transfer, Euler–Euler model, and fluid flow in porous media. In this study, CO is employed as the combustion's intermediate product, which is further oxidized by secondary combustion in the high‐temperature zone. Through calculations, the solid fuel combustion behavior of the sintering is explained collectively with the changing bed temperature, CO emission, and solid fuel combustion efficiency of the process under various fuel particle size distribution. In the sintering process, the fuel particle size distribution is crucial for lowering CO emissions and increasing combustion efficiency. The combustion efficiency shows a tendency of increasing initially before decreasing with the reduction of solid fuel particle size, while CO emissions show a trend of reducing first and then increasing. It is advantageous to lower the CO emission in the sintering process, and the combustion efficiency of the sintering process is greatly boosted by 5.13% when the proportion of solid fuel with 5 mm particle size decreases and the proportion of solid fuel with 3 mm particle size increases.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400094","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

For sintering pot productive process with various fuel particle size distributions, a transient numerical simulation sintering model based on the computational fluid dynamics approach is developed using Fluent 2021R1. The model combines chemical reaction, mass and heat transfer, Euler–Euler model, and fluid flow in porous media. In this study, CO is employed as the combustion's intermediate product, which is further oxidized by secondary combustion in the high‐temperature zone. Through calculations, the solid fuel combustion behavior of the sintering is explained collectively with the changing bed temperature, CO emission, and solid fuel combustion efficiency of the process under various fuel particle size distribution. In the sintering process, the fuel particle size distribution is crucial for lowering CO emissions and increasing combustion efficiency. The combustion efficiency shows a tendency of increasing initially before decreasing with the reduction of solid fuel particle size, while CO emissions show a trend of reducing first and then increasing. It is advantageous to lower the CO emission in the sintering process, and the combustion efficiency of the sintering process is greatly boosted by 5.13% when the proportion of solid fuel with 5 mm particle size decreases and the proportion of solid fuel with 3 mm particle size increases.
烧结过程中 CO 生成和燃烧效率的数值模拟:固体燃料粒度的影响
针对各种燃料粒度分布的烧结锅生产过程,使用 Fluent 2021R1 开发了基于计算流体动力学方法的瞬态数值模拟烧结模型。该模型结合了化学反应、传质和传热、欧拉-欧拉模型以及多孔介质中的流体流动。本研究采用 CO 作为燃烧的中间产物,在高温区通过二次燃烧进一步氧化。通过计算,对不同燃料粒度分布下烧结过程中的床温变化、CO 排放和固体燃料燃烧效率等固体燃料燃烧行为进行了综合解释。在烧结过程中,燃料粒度分布对降低 CO 排放和提高燃烧效率至关重要。随着固体燃料粒度的减小,燃烧效率呈现先升高后降低的趋势,而 CO 排放量则呈现先降低后升高的趋势。降低烧结过程中的 CO 排放量是有利的,当粒径为 5 毫米的固体燃料比例减少,粒径为 3 毫米的固体燃料比例增加时,烧结过程的燃烧效率将大大提高 5.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信