{"title":"GIS-Based Optimal Siting of Offshore Wind Farms to Support Zero-Emission Ferry Routes","authors":"Orfeas Karountzos, Stamatina Giannaki, Konstantinos Kepaptsoglou","doi":"10.3390/jmse12091585","DOIUrl":null,"url":null,"abstract":"To achieve net zero emissions from ships by 2050 and align with the IMO 2023 GHG strategy, the maritime industry must significantly increase zero-emission vessels by 2030. Transitioning to fully electric ferry lines requires enhanced energy supply through renewable energy sources (RES) for complete GHG mitigation and net-zero emissions. This study presents a GIS-based framework for optimally selecting offshore wind farm locations to meet the energy demands of electric ferry operations along coastal routes. The framework involves two stages: designing feasible zero-emission ferry routes between islands or to the mainland and identifying optimal offshore wind farm sites by evaluating technical, spatial, economic, social, and environmental criteria based on national legislation and the academic literature. The aim is to create a flexible framework to support decision making for establishing sustainable electric ferry operations at a regional level, backed by strategically located offshore wind farms. The study applies this framework to the Greek Coastal Shipping Network, focusing on areas with potential for future electrification. The findings can aid policymakers in utilizing spatial decision support systems (SDSS) to enhance efficient transportation and develop sustainable island communities.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091585","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve net zero emissions from ships by 2050 and align with the IMO 2023 GHG strategy, the maritime industry must significantly increase zero-emission vessels by 2030. Transitioning to fully electric ferry lines requires enhanced energy supply through renewable energy sources (RES) for complete GHG mitigation and net-zero emissions. This study presents a GIS-based framework for optimally selecting offshore wind farm locations to meet the energy demands of electric ferry operations along coastal routes. The framework involves two stages: designing feasible zero-emission ferry routes between islands or to the mainland and identifying optimal offshore wind farm sites by evaluating technical, spatial, economic, social, and environmental criteria based on national legislation and the academic literature. The aim is to create a flexible framework to support decision making for establishing sustainable electric ferry operations at a regional level, backed by strategically located offshore wind farms. The study applies this framework to the Greek Coastal Shipping Network, focusing on areas with potential for future electrification. The findings can aid policymakers in utilizing spatial decision support systems (SDSS) to enhance efficient transportation and develop sustainable island communities.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.