High-granularity Dual-readout Calorimeter: Evolution of a Classic Prototype

N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell
{"title":"High-granularity Dual-readout Calorimeter: Evolution of a Classic Prototype","authors":"N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell","doi":"arxiv-2408.15430","DOIUrl":null,"url":null,"abstract":"The original dual-readout calorimeter prototype (DREAM), constructed two\ndecades ago, has proven instrumental in advancing our understanding of\ncalorimetry. It has facilitated a multitude of breakthroughs by leveraging\nsignals from complementary media (Cherenkov and scintillation) to capture\nfluctuations in electromagnetic energy fraction within hadronic showers. Over\nthe years, extensive studies have shed light on the performance characteristics\nof this module, rendering it exceptionally well-understood. Drawing on this\nwealth of experience, we have embarked on enhancing the detectors' capabilities\nfurther by integrating fast silicon photomultipliers (SiPMs) with finer\ntransverse segmentation, $\\sim$1 cm$^2$, as well as longitudinal segmentation\nby timing measuring better than 10 cm. This configuration will allow us to\nimage hadronic showers with high granularity (HG-DREAM). We argue that the\nspatial information provided by such a granular detector in a short time window\n($\\approx$5 ns) leads to substantial enhancement in energy resolution when\nadvanced neural networks are employed in energy reconstruction. We briefly\npresent the current status of work, new concepts that have been introduced to\nthe detector, and expectations from simulations.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The original dual-readout calorimeter prototype (DREAM), constructed two decades ago, has proven instrumental in advancing our understanding of calorimetry. It has facilitated a multitude of breakthroughs by leveraging signals from complementary media (Cherenkov and scintillation) to capture fluctuations in electromagnetic energy fraction within hadronic showers. Over the years, extensive studies have shed light on the performance characteristics of this module, rendering it exceptionally well-understood. Drawing on this wealth of experience, we have embarked on enhancing the detectors' capabilities further by integrating fast silicon photomultipliers (SiPMs) with finer transverse segmentation, $\sim$1 cm$^2$, as well as longitudinal segmentation by timing measuring better than 10 cm. This configuration will allow us to image hadronic showers with high granularity (HG-DREAM). We argue that the spatial information provided by such a granular detector in a short time window ($\approx$5 ns) leads to substantial enhancement in energy resolution when advanced neural networks are employed in energy reconstruction. We briefly present the current status of work, new concepts that have been introduced to the detector, and expectations from simulations.
高粒度双读数量热仪:经典原型的演变
最初的双读出量热计原型(DREAM)是在二十年前建造的,事实证明它在推动我们对量热计的理解方面发挥了重要作用。它通过利用来自互补介质(切伦科夫和闪烁)的信号来捕捉强子阵列中电磁能量分数的波动,促进了许多突破性进展。多年来,大量研究揭示了这一模块的性能特征,使人们对它有了非常深入的了解。借鉴这些丰富的经验,我们已着手通过集成快速硅光电倍增管(SiPMs)来进一步增强探测器的能力,SiPMs具有更精细的横向分段能力($\sim$1 cm$^2$),并能通过优于10厘米的定时测量来进行纵向分段。这种配置将使我们能够对强子阵列进行高粒度成像(HG-DREAM)。我们认为,当在能量重建中使用高级神经网络时,这种粒度探测器在短时间窗口(约5毫微秒)内提供的空间信息将大大提高能量分辨率。我们简要介绍了工作现状、探测器引入的新概念以及模拟预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信