{"title":"Two-Dimensional Polarized Blue P/SiS Heterostructures as Promising Photocatalysts for Water Splitting","authors":"Yin Liu, Di Gu, Xiaoma Tao, Yifang Ouyang, Chunyan Duan, Guangxing Liang","doi":"10.3390/molecules29184355","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) polarized heterostructures with internal electric fields are potential photocatalysts for high catalytic performance. The Blue P/SiS van der Waals heterostructures were formed from monolayer Blue P and polar monolayer SiS with different stacking interfaces, including Si-P and P-S interfaces. The structural, electronic, optical and photocatalytic properties of the Blue P/SiS heterostructures were studied via first-principle calculations. The results showed that the Si-P-2 or P-S-4 stacking order contributes to the most stable heterostructure with the Si-P or P-S interface. The direction of the internal electric field is from the 001 surface toward the 001¯ surface, which is helpful for separating photo-generated electron–hole pairs. The bandgap and electrostatic potential differences in the Si-P-2(P-S-4) heterostructures are 1.74 eV (2.30 eV) and 0.287 eV (0.181 eV), respectively. Moreover, the Si-P-2(P-S-4) heterostructures possess suitable band alignment and wide ultraviolet and visible light spectrum regions. All results suggest that 2D polarized Blue P/SiS heterostructures are potential novel photocatalysts for water splitting under a wide ultraviolet and visible light spectrum region.","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29184355","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) polarized heterostructures with internal electric fields are potential photocatalysts for high catalytic performance. The Blue P/SiS van der Waals heterostructures were formed from monolayer Blue P and polar monolayer SiS with different stacking interfaces, including Si-P and P-S interfaces. The structural, electronic, optical and photocatalytic properties of the Blue P/SiS heterostructures were studied via first-principle calculations. The results showed that the Si-P-2 or P-S-4 stacking order contributes to the most stable heterostructure with the Si-P or P-S interface. The direction of the internal electric field is from the 001 surface toward the 001¯ surface, which is helpful for separating photo-generated electron–hole pairs. The bandgap and electrostatic potential differences in the Si-P-2(P-S-4) heterostructures are 1.74 eV (2.30 eV) and 0.287 eV (0.181 eV), respectively. Moreover, the Si-P-2(P-S-4) heterostructures possess suitable band alignment and wide ultraviolet and visible light spectrum regions. All results suggest that 2D polarized Blue P/SiS heterostructures are potential novel photocatalysts for water splitting under a wide ultraviolet and visible light spectrum region.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.