Comprehensive study on structural, morphological, elemental, optical and magnetic properties of cobalt ferrite-manganese oxide nanocomposites for enhanced photocatalytic application
IF 2.8 4区 工程技术Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Comprehensive study on structural, morphological, elemental, optical and magnetic properties of cobalt ferrite-manganese oxide nanocomposites for enhanced photocatalytic application","authors":"Dheeraj Yadav, Rajni Shukla","doi":"10.1007/s10854-024-13367-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis and comprehensive characterisation of Cobalt Ferrite-Manganese Oxide (CoFe<sub>2</sub>O<sub>4</sub>–Mn<sub>2</sub>O<sub>3</sub>) nanoparticles and their composites, aiming to explore their potential as effective photocatalysts for the degradation of methylene blue dye. The pure CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles were successfully synthesized via the coprecipitation method, while the composites were fabricated using the sonochemical method. The synthesized materials were thoroughly characterized using various techniques, including X-ray Diffraction (XRD) analysis that confirmed the formation of crystalline CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles with desired phase and high purity. Fourier transform infrared spectroscopy (FTIR) provided valuable information on the chemical bonding and functional groups present in the samples. Field emission scanning electron microscopy (FESEM) imaging exhibited the morphology and size distribution of the nanoparticles, while Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the elemental composition. Ultraviolet–visible (UV–Vis) spectroscopy revealed the optical properties of the materials, suggesting potential photocatalytic applications. Vibrating sample magnetometer (VSM) measurements demonstrated the magnetic properties of synthesized material, which could be advantageous for magnetic separation during the photocatalysis process. The photocatalytic performance of the material was evaluated in the degradation of methylene blue under UV light irradiation.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13367-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis and comprehensive characterisation of Cobalt Ferrite-Manganese Oxide (CoFe2O4–Mn2O3) nanoparticles and their composites, aiming to explore their potential as effective photocatalysts for the degradation of methylene blue dye. The pure CoFe2O4 and Mn2O3 nanoparticles were successfully synthesized via the coprecipitation method, while the composites were fabricated using the sonochemical method. The synthesized materials were thoroughly characterized using various techniques, including X-ray Diffraction (XRD) analysis that confirmed the formation of crystalline CoFe2O4 and Mn2O3 nanoparticles with desired phase and high purity. Fourier transform infrared spectroscopy (FTIR) provided valuable information on the chemical bonding and functional groups present in the samples. Field emission scanning electron microscopy (FESEM) imaging exhibited the morphology and size distribution of the nanoparticles, while Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the elemental composition. Ultraviolet–visible (UV–Vis) spectroscopy revealed the optical properties of the materials, suggesting potential photocatalytic applications. Vibrating sample magnetometer (VSM) measurements demonstrated the magnetic properties of synthesized material, which could be advantageous for magnetic separation during the photocatalysis process. The photocatalytic performance of the material was evaluated in the degradation of methylene blue under UV light irradiation.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.