Salih Alper Akalin, Tiago Mateus, Guilherme Ribeiro, Jonas Deuermeier, Tomas Calmeiro, Hugo Águas, Rodrigo Martins, António T. Vicente, Manuel J. Mendes, Ugur Deneb Yilmazer Menda
{"title":"Ultra-flexible, high-performing NAN transparent electrodes for bendable optoelectronic applications","authors":"Salih Alper Akalin, Tiago Mateus, Guilherme Ribeiro, Jonas Deuermeier, Tomas Calmeiro, Hugo Águas, Rodrigo Martins, António T. Vicente, Manuel J. Mendes, Ugur Deneb Yilmazer Menda","doi":"10.1007/s10854-024-13442-2","DOIUrl":null,"url":null,"abstract":"<div><p>The NiO/Ag/NiO (NAN) structure, a member of the oxide/metal/oxide (OMO) structures, was developed as an alternative to conventional transparent electrodes. The fabrication process employed combination of RF-magnetron sputter and e-beam evaporation techniques, and to optimize the electrode performance, the Ag layer thickness within the NAN structures was varied between 4 and 20 nm. The resulting configurations were evaluated through the Fraser-Cook and Haacke figures of merit (FoM). The optimized structure exhibited high optical transmittance of 75% and a low sheet resistance (R<sub>S</sub>) of ∼5 Ω/□. Compared to a commercial sample of indium tin oxide (ITO) coated polyethylene terephthalate (PET), the NAN/PET structures show higher Fraser-Cook FoM, closely aligned with the Haacke FoM, owing to their lower R<sub>S</sub> values. In addition, the flexural resistance of the electrodes was assessed by subjecting the samples to 10,000 bending cycles. Following this test, the R<sub>S</sub> value of ITO/PET increased 26.3 times to 3312.89 Ω/□, while the NAN/PET only increased 1.25 times to 7.82 Ω/□. Even the least performing NAN sample, deposited on polyethylene naphthalate (NAN/PEN), experienced a moderate increase in resistance, stabilizing at 59.93 Ω/□. The obtained results highlight the great potential of the NAN structure as an electrode for flexible optoelectronic devices.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13442-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The NiO/Ag/NiO (NAN) structure, a member of the oxide/metal/oxide (OMO) structures, was developed as an alternative to conventional transparent electrodes. The fabrication process employed combination of RF-magnetron sputter and e-beam evaporation techniques, and to optimize the electrode performance, the Ag layer thickness within the NAN structures was varied between 4 and 20 nm. The resulting configurations were evaluated through the Fraser-Cook and Haacke figures of merit (FoM). The optimized structure exhibited high optical transmittance of 75% and a low sheet resistance (RS) of ∼5 Ω/□. Compared to a commercial sample of indium tin oxide (ITO) coated polyethylene terephthalate (PET), the NAN/PET structures show higher Fraser-Cook FoM, closely aligned with the Haacke FoM, owing to their lower RS values. In addition, the flexural resistance of the electrodes was assessed by subjecting the samples to 10,000 bending cycles. Following this test, the RS value of ITO/PET increased 26.3 times to 3312.89 Ω/□, while the NAN/PET only increased 1.25 times to 7.82 Ω/□. Even the least performing NAN sample, deposited on polyethylene naphthalate (NAN/PEN), experienced a moderate increase in resistance, stabilizing at 59.93 Ω/□. The obtained results highlight the great potential of the NAN structure as an electrode for flexible optoelectronic devices.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.