{"title":"Bouligand–Newton type methods for non-smooth ill-posed problems","authors":"Qinian Jin, Yun Zhang","doi":"10.1088/1361-6420/ad7496","DOIUrl":null,"url":null,"abstract":"We consider Newton-type methods for solving nonlinear ill-posed inverse problems in Hilbert spaces where the forward operators are not necessarily Gâteaux differentiable. Modifications are proposed with the non-existing Fréchet derivatives replaced by a family of bounded linear operators satisfying suitable properties. These bounded linear operators can be constructed by the Bouligand subderivatives which are defined as limits of Fréchet derivatives of the forward operator in differentiable points. The Bouligand subderivative mapping in general is not continuous unless the forward operator is Gâteaux differentiable which introduces challenges for convergence analysis of the corresponding Bouligand–Newton type methods. In this paper we will show that, under the discrepancy principle, these Bouligand–Newton type methods are iterative regularization methods of optimal order. Numerical results for an inverse problem arising from a non-smooth semi-linear elliptic equation are presented to test the performance of the methods.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"9 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Newton-type methods for solving nonlinear ill-posed inverse problems in Hilbert spaces where the forward operators are not necessarily Gâteaux differentiable. Modifications are proposed with the non-existing Fréchet derivatives replaced by a family of bounded linear operators satisfying suitable properties. These bounded linear operators can be constructed by the Bouligand subderivatives which are defined as limits of Fréchet derivatives of the forward operator in differentiable points. The Bouligand subderivative mapping in general is not continuous unless the forward operator is Gâteaux differentiable which introduces challenges for convergence analysis of the corresponding Bouligand–Newton type methods. In this paper we will show that, under the discrepancy principle, these Bouligand–Newton type methods are iterative regularization methods of optimal order. Numerical results for an inverse problem arising from a non-smooth semi-linear elliptic equation are presented to test the performance of the methods.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.