Analysis of the monotonicity method for an anisotropic scatterer with a conductive boundary

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Isaac Harris, Victor Hughes, Heejin Lee
{"title":"Analysis of the monotonicity method for an anisotropic scatterer with a conductive boundary","authors":"Isaac Harris, Victor Hughes, Heejin Lee","doi":"10.1088/1361-6420/ad7053","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping into <italic toggle=\"yes\">H</italic><sup>1</sup> of a small ball.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping into H1 of a small ball.
具有导电边界的各向异性散射体的单调性方法分析
在本文中,我们将考虑与具有导电边界的各向异性介质相关的反向散射问题。我们将假设相应的远场模式是已知的/测量到的,并考虑两个反问题。首先,我们将证明远场数据能唯一确定边界系数。接下来,由于已知各向异性系数并非由该数据唯一确定,我们将开发一种定性方法来恢复散射体。为此,我们将研究应用于这一反形状问题的所谓单调性方法。这种方法最近被应用于一些反向散射问题,但这是它首次被应用于各向异性散射体。这种方法可以通过考虑与远场算子相关的算子的特征值来恢复散射体。我们将介绍一些简单的数值重建,以说明我们的二维理论。为了进行重构,我们需要将赫格洛茨波函数的邻接值计算为映射到小球 H1 的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信