Giovana Signori-Iamin, Roberto J. Aguado, Quim Tarrés, Alexandre F. Santos, Marc Delgado-Aguilar
{"title":"Exploring the synergistic effect of anionic and cationic fibrillated cellulose as sustainable additives in papermaking","authors":"Giovana Signori-Iamin, Roberto J. Aguado, Quim Tarrés, Alexandre F. Santos, Marc Delgado-Aguilar","doi":"10.1007/s10570-024-06145-8","DOIUrl":null,"url":null,"abstract":"<div><p>While cationic cellulose has yet to find a place in the paper industry, manufacturers show certain interest in a more recent material: cellulose nanofibers (CNFs), generally with negative surface charge. This work suggests both to be combined to increase the mechanical properties of recycled paper while preventing the use of synthetic polyelectrolytes as retention agents. On one hand, a bleached pulp was cationized by etherification, both as-is and following mechanical refining (15,000 PFI revolutions) and submitted to high-pressure homogenization, generating two different kinds of cationic CNFs. On the other, the same pulp was submitted to an enzymatic pretreatment and high-pressure homogenization, producing a negatively charged cellulose micro/nanofiber (CMNF). Two different cellulose-based systems consisting of each type of cationic CNF and the enzymatic CMNF were applied in the papermaking of both virgin and recycled paper. This study demonstrates the effective use of the cationic CNFs as retention agents during sheet formation, which together with the enzymatic CMNFs significantly enhanced the mechanical properties of both types of paper. The study found that refining before cationization favored the retention effect, primarily due to increased surface area and charge of the cationic CNFs, where remarkable increases in the breaking length of virgin (125.1%) and recycled paper (46.5%) were reached. The synergy between cationic CNFs and enzymatic CMNFs outperformed the use of commercial polyacrylamide, a non-biodegradable polyelectrolyte. This research highlights the potential of tailored CNFs in producing high-performance papers, while promoting sustainability and offering a plausible strategy to increase paper recycling rates.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 15","pages":"9349 - 9368"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06145-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06145-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
While cationic cellulose has yet to find a place in the paper industry, manufacturers show certain interest in a more recent material: cellulose nanofibers (CNFs), generally with negative surface charge. This work suggests both to be combined to increase the mechanical properties of recycled paper while preventing the use of synthetic polyelectrolytes as retention agents. On one hand, a bleached pulp was cationized by etherification, both as-is and following mechanical refining (15,000 PFI revolutions) and submitted to high-pressure homogenization, generating two different kinds of cationic CNFs. On the other, the same pulp was submitted to an enzymatic pretreatment and high-pressure homogenization, producing a negatively charged cellulose micro/nanofiber (CMNF). Two different cellulose-based systems consisting of each type of cationic CNF and the enzymatic CMNF were applied in the papermaking of both virgin and recycled paper. This study demonstrates the effective use of the cationic CNFs as retention agents during sheet formation, which together with the enzymatic CMNFs significantly enhanced the mechanical properties of both types of paper. The study found that refining before cationization favored the retention effect, primarily due to increased surface area and charge of the cationic CNFs, where remarkable increases in the breaking length of virgin (125.1%) and recycled paper (46.5%) were reached. The synergy between cationic CNFs and enzymatic CMNFs outperformed the use of commercial polyacrylamide, a non-biodegradable polyelectrolyte. This research highlights the potential of tailored CNFs in producing high-performance papers, while promoting sustainability and offering a plausible strategy to increase paper recycling rates.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.