{"title":"Data-driven transient lift attenuation for extreme vortex gust–airfoil interactions","authors":"Kai Fukami, Hiroya Nakao, Kunihiko Taira","doi":"10.1017/jfm.2024.592","DOIUrl":null,"url":null,"abstract":"We present a data-driven feedforward control to attenuate large transient lift experienced by an airfoil disturbed by an extreme level of discrete vortex gust. The current analysis uses a nonlinear machine-learning technique to compress the high-dimensional flow dynamics onto a low-dimensional manifold. While the interaction dynamics between the airfoil and extreme vortex gust are parametrized by its size, gust ratio and position, the wake responses are well captured on this simple manifold. The effect of extreme vortex disturbance about the undisturbed baseline flows can be extracted in a physically interpretable manner. Furthermore, we call on phase-amplitude reduction to model and control the complex nonlinear extreme aerodynamic flows. The present phase-amplitude reduction model reveals the sensitivity of the dynamical system in terms of the phase shift and amplitude change induced by external forcing with respect to the baseline periodic orbit. By performing the phase-amplitude analysis for a latent dynamical model identified by sparse regression, the sensitivity functions of low-dimensionalized aerodynamic flows for both phase and amplitude are derived. With the phase and amplitude sensitivity functions, optimal forcing can be determined to quickly suppress the effect of extreme vortex gusts towards the undisturbed states in a low-order space. The present optimal flow modification built upon the machine-learned low-dimensional subspace quickly alleviates the impact of transient vortex gusts for a variety of extreme aerodynamic scenarios, providing a potential foundation for flight of small-scale air vehicles in adverse atmospheric conditions.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"21 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.592","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a data-driven feedforward control to attenuate large transient lift experienced by an airfoil disturbed by an extreme level of discrete vortex gust. The current analysis uses a nonlinear machine-learning technique to compress the high-dimensional flow dynamics onto a low-dimensional manifold. While the interaction dynamics between the airfoil and extreme vortex gust are parametrized by its size, gust ratio and position, the wake responses are well captured on this simple manifold. The effect of extreme vortex disturbance about the undisturbed baseline flows can be extracted in a physically interpretable manner. Furthermore, we call on phase-amplitude reduction to model and control the complex nonlinear extreme aerodynamic flows. The present phase-amplitude reduction model reveals the sensitivity of the dynamical system in terms of the phase shift and amplitude change induced by external forcing with respect to the baseline periodic orbit. By performing the phase-amplitude analysis for a latent dynamical model identified by sparse regression, the sensitivity functions of low-dimensionalized aerodynamic flows for both phase and amplitude are derived. With the phase and amplitude sensitivity functions, optimal forcing can be determined to quickly suppress the effect of extreme vortex gusts towards the undisturbed states in a low-order space. The present optimal flow modification built upon the machine-learned low-dimensional subspace quickly alleviates the impact of transient vortex gusts for a variety of extreme aerodynamic scenarios, providing a potential foundation for flight of small-scale air vehicles in adverse atmospheric conditions.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.