Farbod Amirghasemi, Abdulrahman Al-Shami, Kara Ushijima, Maral P. S. Mousavi
{"title":"Flexible Acetylcholine Neural Probe with a Hydrophobic Laser-Induced Graphene Electrode and a Fluorous-Phase Sensing Membrane","authors":"Farbod Amirghasemi, Abdulrahman Al-Shami, Kara Ushijima, Maral P. S. Mousavi","doi":"10.1021/acsmaterialslett.4c00825","DOIUrl":null,"url":null,"abstract":"This work develops the first laser-induced graphene (LIG)-based electrochemical sensor with a superhydrophobic fluorous membrane for a flexible acetylcholine (ACh) sensor. ACh regulates several physiological functions, including synaptic transmission and glandular secretion. The ACh sensing membrane is doped with a fluorophilic cation-exchanger that can selectively measure ACh based on the inherent selectivity of the fluorous phase for hydrophobic ions, such as ACh. The fluorous-phase sensor improves the selectivity for ACh over Na<sup>+</sup> and K<sup>+</sup> by 2 orders of magnitude (compared to traditional lipophilic membranes), thus lowering the detection limit in artificial cerebrospinal fluid (aCSF) from 331 to 0.38 μM, thereby allowing measurement in physiologically relevant ranges of ACh. Engraving LIG under argon creates a hydrophobic surface with a 133.7° contact angle, which minimizes the formation of a water layer. The flexible solid-contact LIG fluorous sensor exhibited a slope of 59.3 mV/decade in aCSF and retained function after 20 bending cycles, thereby paving the way for studying ACh’s role in memory and neurodegenerative diseases.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"21 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c00825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work develops the first laser-induced graphene (LIG)-based electrochemical sensor with a superhydrophobic fluorous membrane for a flexible acetylcholine (ACh) sensor. ACh regulates several physiological functions, including synaptic transmission and glandular secretion. The ACh sensing membrane is doped with a fluorophilic cation-exchanger that can selectively measure ACh based on the inherent selectivity of the fluorous phase for hydrophobic ions, such as ACh. The fluorous-phase sensor improves the selectivity for ACh over Na+ and K+ by 2 orders of magnitude (compared to traditional lipophilic membranes), thus lowering the detection limit in artificial cerebrospinal fluid (aCSF) from 331 to 0.38 μM, thereby allowing measurement in physiologically relevant ranges of ACh. Engraving LIG under argon creates a hydrophobic surface with a 133.7° contact angle, which minimizes the formation of a water layer. The flexible solid-contact LIG fluorous sensor exhibited a slope of 59.3 mV/decade in aCSF and retained function after 20 bending cycles, thereby paving the way for studying ACh’s role in memory and neurodegenerative diseases.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.