{"title":"Dual-coated single-crystal LiNi0.6Co0.2Mn0.2O2 as high-performance cathode materials for lithium-ion batteries","authors":"Wanmin Liu, Sisha Zeng, Piaopiao Wang, Jing Huang, Bin Shen, Mulan Qin, Weigang Wang, Zexun Tang","doi":"10.1007/s10008-024-06048-5","DOIUrl":null,"url":null,"abstract":"<p>Due to its superior high discharge capacity and cycling stability, single-crystal LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> cathode materials are rapidly gaining traction in the realm of electric vehicle power batteries. Nevertheless, the deterioration of surface structure in single-crystal LiNi<sub>1−x−y</sub>Co<sub>x</sub>Mn<sub>y</sub>O<sub>2</sub> cathode materials is further exacerbated when operating at higher cutoff voltages (exceeding 4.5 V). In this work, a unique single-crystal LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> with ZnO and AlPO<sub>4</sub> dual-coating modification has been synthesized. The similar crystal structure of ZnO and NCM results in a more compact coating, while the incorporation of AlPO<sub>4</sub> enhances both the electronic conductivity (through the formation of conductive oxide Al-doped ZnO) and lithium-ion conductivity (via the formation of Li<sub>3</sub>PO<sub>4</sub>) within the coating. The coated SC-NCM cathode material exhibits excellent electrochemical performance even when operated at a higher cutoff voltage of 4.5 V. After 100 cycles (1 C, 2.75–4.5 V), the capacity retention for the ZnO and AlPO<sub>4</sub> coated SC-NCM sample reaches 91.2%, significantly surpassing that of the pristine samples (40.0%). Specifically, it exhibited an outstanding rate property, maintaining a discharge capacity of 150.8 mA h g<sup>−1</sup> at 8 C. The exceptional electrochemical properties can be attributed to the distinctive coating layer, which serves not only as a physical barrier to mitigate electrolyte side reactions but also facilitates rapid conduction of electrons and lithium ions.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06048-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its superior high discharge capacity and cycling stability, single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials are rapidly gaining traction in the realm of electric vehicle power batteries. Nevertheless, the deterioration of surface structure in single-crystal LiNi1−x−yCoxMnyO2 cathode materials is further exacerbated when operating at higher cutoff voltages (exceeding 4.5 V). In this work, a unique single-crystal LiNi0.6Co0.2Mn0.2O2 with ZnO and AlPO4 dual-coating modification has been synthesized. The similar crystal structure of ZnO and NCM results in a more compact coating, while the incorporation of AlPO4 enhances both the electronic conductivity (through the formation of conductive oxide Al-doped ZnO) and lithium-ion conductivity (via the formation of Li3PO4) within the coating. The coated SC-NCM cathode material exhibits excellent electrochemical performance even when operated at a higher cutoff voltage of 4.5 V. After 100 cycles (1 C, 2.75–4.5 V), the capacity retention for the ZnO and AlPO4 coated SC-NCM sample reaches 91.2%, significantly surpassing that of the pristine samples (40.0%). Specifically, it exhibited an outstanding rate property, maintaining a discharge capacity of 150.8 mA h g−1 at 8 C. The exceptional electrochemical properties can be attributed to the distinctive coating layer, which serves not only as a physical barrier to mitigate electrolyte side reactions but also facilitates rapid conduction of electrons and lithium ions.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.