Marie‐Carole Kouassi, Achraf Kallel, Abir Ben Abdallah, Samia Nouira, Sébastien Ballut, Joseph Fitoussi, Mohammadali Shirinbayan
{"title":"Assessment of fused deposition modeling (FDM) parameters for fabrication of solid and hollow microneedles using polylactic acid (PLA)","authors":"Marie‐Carole Kouassi, Achraf Kallel, Abir Ben Abdallah, Samia Nouira, Sébastien Ballut, Joseph Fitoussi, Mohammadali Shirinbayan","doi":"10.1002/pat.6548","DOIUrl":null,"url":null,"abstract":"This paper investigates the limits of a Fused Deposition Modeling (FDM) process for the fabrication of solid and hollow microneedle patches. Polylactic acid (PLA), a biodegradable and biocompatible polymer, was used as the printing material. For solid microneedles, the effect of 3D printing parameters on the final quality of printed microneedles was studied. In addition, the microneedles dimensions were varied to obtain microneedles with minimal dimensions and then, to highlight the limitations of the printer used. Solid microneedle with a needle tip diameter of 348 ± 13 μm; a needle base diameter of 744 ± 25 μm and a height of 1488 ± 18 μm as minimal dimensions were successfully printed. The FDM technique, when combined with chemical post‐fabrication etching, effectively improved the size and shape of the printed solid microneedles. However, despite efforts to print hollow microneedles, the FDM process proved insufficient for achieving the desired hollow structures, indicating the need for alternative methods or techniques. Hydrolysis treatment has reduced the dimensions of the printed PLA‐based microneedles. On the other hand, printing tests were carried out to make hollow microneedle patches. The drug reservoir is a part of the microneedle patch, located within the base of the patch. The orientation of the printed object and the addition of supports to the drug reservoir were studied to facilitate the printing of hollow parts.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"59 Pt A 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6548","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the limits of a Fused Deposition Modeling (FDM) process for the fabrication of solid and hollow microneedle patches. Polylactic acid (PLA), a biodegradable and biocompatible polymer, was used as the printing material. For solid microneedles, the effect of 3D printing parameters on the final quality of printed microneedles was studied. In addition, the microneedles dimensions were varied to obtain microneedles with minimal dimensions and then, to highlight the limitations of the printer used. Solid microneedle with a needle tip diameter of 348 ± 13 μm; a needle base diameter of 744 ± 25 μm and a height of 1488 ± 18 μm as minimal dimensions were successfully printed. The FDM technique, when combined with chemical post‐fabrication etching, effectively improved the size and shape of the printed solid microneedles. However, despite efforts to print hollow microneedles, the FDM process proved insufficient for achieving the desired hollow structures, indicating the need for alternative methods or techniques. Hydrolysis treatment has reduced the dimensions of the printed PLA‐based microneedles. On the other hand, printing tests were carried out to make hollow microneedle patches. The drug reservoir is a part of the microneedle patch, located within the base of the patch. The orientation of the printed object and the addition of supports to the drug reservoir were studied to facilitate the printing of hollow parts.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.