{"title":"The dynamical behavior effects of different numbers of discrete memristive synaptic coupled neurons","authors":"Minyuan Cheng, Kaihua Wang, Xianying Xu, Jun Mou","doi":"10.1007/s11571-024-10172-3","DOIUrl":null,"url":null,"abstract":"<p>Two types of neuron models are constructed in this paper, namely the single discrete memristive synaptic neuron model and the dual discrete memristive synaptic neuron model. Firstly, it is proved that both models have only one unstable equilibrium point. Then, the influence of the coupling strength parameters and neural membrane amplification coefficient of the corresponding system of the two models on the rich dynamical behavior of the systems is analyzed. Research has shown that when the number of discrete local active memristor used as simulation synapses in the system increases from one to two, the coupling strength parameter of the same memristor has significantly different effects on the dynamical behavior of the system within the same range, that is, from a state with periodicity, chaos, and periodicity window to a state with only chaos. In addition, under the influence of coupling strength parameters and neural membrane amplification coefficients, the complexity of the system weakens to varying degrees. Moreover, under the effect of two memristors, the system exhibits a rare and interesting phenomenon where the coupling strength parameter and the neural membrane amplification coefficient can mutually serve as control parameter, resulting in the generation of a remerging Feigenbaum tree. Finally, the pseudo-randomness of the chaotic systems corresponding to the two models are detected by NIST SP800-22, and relevant simulation results are verified on the DSP hardware experimental platform. The discrete memristive synaptic neuron models established in this article provide assistance in studying the relevant working principles of real neurons.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10172-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Two types of neuron models are constructed in this paper, namely the single discrete memristive synaptic neuron model and the dual discrete memristive synaptic neuron model. Firstly, it is proved that both models have only one unstable equilibrium point. Then, the influence of the coupling strength parameters and neural membrane amplification coefficient of the corresponding system of the two models on the rich dynamical behavior of the systems is analyzed. Research has shown that when the number of discrete local active memristor used as simulation synapses in the system increases from one to two, the coupling strength parameter of the same memristor has significantly different effects on the dynamical behavior of the system within the same range, that is, from a state with periodicity, chaos, and periodicity window to a state with only chaos. In addition, under the influence of coupling strength parameters and neural membrane amplification coefficients, the complexity of the system weakens to varying degrees. Moreover, under the effect of two memristors, the system exhibits a rare and interesting phenomenon where the coupling strength parameter and the neural membrane amplification coefficient can mutually serve as control parameter, resulting in the generation of a remerging Feigenbaum tree. Finally, the pseudo-randomness of the chaotic systems corresponding to the two models are detected by NIST SP800-22, and relevant simulation results are verified on the DSP hardware experimental platform. The discrete memristive synaptic neuron models established in this article provide assistance in studying the relevant working principles of real neurons.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.