Integration of the Korteweg–de Vries Equation with Time-Dependent Coefficients in the Case of Moving Eigenvalues of the Sturm–Liouville Operator

IF 0.5 Q3 MATHEMATICS
U. A. Hoitmetov, T. G. Khasanov
{"title":"Integration of the Korteweg–de Vries Equation with Time-Dependent Coefficients in the Case of Moving Eigenvalues of the Sturm–Liouville Operator","authors":"U. A. Hoitmetov, T. G. Khasanov","doi":"10.3103/s1066369x2470035x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The inverse scattering method is used to integrate the Korteweg–de Vries equation with time-dependent coefficients. We derive the evolution of the scattering data of the Sturm–Liouville operator whose coefficient is a solution of the Korteweg–de Vries equation with time-dependent coefficients. An algorithm for constructing exact solutions of the Korteweg–de Vries equation with time-dependent coefficients is also proposed; we reduce it to the inverse problem of scattering theory for the Sturm–Liouville operator. Examples illustrating the stated algorithm are given.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"316 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2470035x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inverse scattering method is used to integrate the Korteweg–de Vries equation with time-dependent coefficients. We derive the evolution of the scattering data of the Sturm–Liouville operator whose coefficient is a solution of the Korteweg–de Vries equation with time-dependent coefficients. An algorithm for constructing exact solutions of the Korteweg–de Vries equation with time-dependent coefficients is also proposed; we reduce it to the inverse problem of scattering theory for the Sturm–Liouville operator. Examples illustrating the stated algorithm are given.

在 Sturm-Liouville 算子特征值移动的情况下,对带有时变系数的 Korteweg-de Vries 方程进行积分
摘要 使用反向散射法来积分系数随时间变化的 Korteweg-de Vries 方程。我们推导了Sturm-Liouville算子的散射数据的演变,该算子的系数是Korteweg-de Vries方程随时间变化系数的解。我们还提出了一种算法,用于构建系数随时间变化的 Korteweg-de Vries 方程的精确解;我们将其简化为 Sturm-Liouville 算子的散射理论逆问题。我们给出了说明所述算法的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信