Hopf Algebras with the Dual Chevalley Property of Finite Corepresentation Type

Pub Date : 2024-08-21 DOI:10.1007/s10468-024-10284-8
Jing Yu, Kangqiao Li, Gongxiang Liu
{"title":"Hopf Algebras with the Dual Chevalley Property of Finite Corepresentation Type","authors":"Jing Yu,&nbsp;Kangqiao Li,&nbsp;Gongxiang Liu","doi":"10.1007/s10468-024-10284-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>H</i> be a finite-dimensional Hopf algebra over an algebraically closed field <span>\\(\\Bbbk \\)</span> with the dual Chevalley property. We prove that <i>H</i> is of finite corepresentation type if and only if it is coNakayama, if and only if the link quiver <span>\\(\\textrm{Q}(H)\\)</span> of <i>H</i> is a disjoint union of basic cycles, if and only if the link-indecomposable component <span>\\(H_{(1)}\\)</span> containing <span>\\(\\Bbbk 1\\)</span> is a pointed Hopf algebra and the link quiver of <span>\\(H_{(1)}\\)</span> is a basic cycle.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10284-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a finite-dimensional Hopf algebra over an algebraically closed field \(\Bbbk \) with the dual Chevalley property. We prove that H is of finite corepresentation type if and only if it is coNakayama, if and only if the link quiver \(\textrm{Q}(H)\) of H is a disjoint union of basic cycles, if and only if the link-indecomposable component \(H_{(1)}\) containing \(\Bbbk 1\) is a pointed Hopf algebra and the link quiver of \(H_{(1)}\) is a basic cycle.

分享
查看原文
具有有限核心呈现类型双重切瓦利性质的霍普夫代数方程
设 H 是代数闭域 \(\Bbbk \)上的有限维霍普夫代数,具有对偶切瓦利性质。我们证明,当且仅当 H 是 coNakayama 时,当且仅当 H 的 link quiver (\textrm{Q}(H)\)是基本循环的不相交联盟时,当且仅当包含 \(\Bbbk 1\) 的 link-indecomposable 组件 \(H_{(1)}\) 是尖的 Hopf 代数且 \(H_{(1)}\ 的 link quiver 是基本循环时,H 才是有限核呈现类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信