Noel A Brennan,Wright Shamp,Elizabeth Maynes,Xu Cheng,Mark A Bullimore
{"title":"Influence of age and race on axial elongation in myopic children: A systematic review and meta-regression.","authors":"Noel A Brennan,Wright Shamp,Elizabeth Maynes,Xu Cheng,Mark A Bullimore","doi":"10.1097/opx.0000000000002176","DOIUrl":null,"url":null,"abstract":"PURPOSE\r\nAxial elongation is the basis of progression in primary myopia and the preferred metric to monitor its evolution. We conducted a meta-regression to model axial elongation and its associated factors in children with low to moderate myopia.\r\n\r\nMETHODS\r\nA comprehensive electronic systematic search was performed using Ovid Medline, EMBASE, and Cochrane Central Register of Controlled Trials of studies conducted up until October 2021. The mean rate of axial elongation was analyzed using a multivariate linear mixed-effects meta-regression model, with backward stepwise elimination of nonsignificant covariates. The model included three levels of random effects, allowing both prediction and confidence intervals to be estimated.\r\n\r\nRESULTS\r\nA total of 64 studies with 83 subpopulations and 142 evaluations of mean axial change from baseline met our inclusion criteria and had no missing significant covariates in the final model. A separate analysis including all populations with axial length data (202 evaluations) but missing variance or covariate data produced a similar model to that for the analysis with complete data. The mean axial elongation is 38% greater in Asian children (95% confidence interval, 19 to 61%; p<0.01) compared with non-Asians, but both groups show a 15% decline per year as age increases (95% confidence interval, 12 to 17% p<0.0001). Prediction intervals indicate substantial variability around the axial elongation estimates.\r\n\r\nCONCLUSIONS\r\nThis analysis provides mean values of axial elongation for evaluation of efficacy of myopia control. The broad prediction intervals emphasize the large range of individual axial elongation rates in the population, illustrating the challenge in managing individual children. Interpretation of the analysis is limited by the use of aggregated data rather than individual subject data.","PeriodicalId":19649,"journal":{"name":"Optometry and Vision Science","volume":"63 1","pages":"497-507"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optometry and Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/opx.0000000000002176","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE
Axial elongation is the basis of progression in primary myopia and the preferred metric to monitor its evolution. We conducted a meta-regression to model axial elongation and its associated factors in children with low to moderate myopia.
METHODS
A comprehensive electronic systematic search was performed using Ovid Medline, EMBASE, and Cochrane Central Register of Controlled Trials of studies conducted up until October 2021. The mean rate of axial elongation was analyzed using a multivariate linear mixed-effects meta-regression model, with backward stepwise elimination of nonsignificant covariates. The model included three levels of random effects, allowing both prediction and confidence intervals to be estimated.
RESULTS
A total of 64 studies with 83 subpopulations and 142 evaluations of mean axial change from baseline met our inclusion criteria and had no missing significant covariates in the final model. A separate analysis including all populations with axial length data (202 evaluations) but missing variance or covariate data produced a similar model to that for the analysis with complete data. The mean axial elongation is 38% greater in Asian children (95% confidence interval, 19 to 61%; p<0.01) compared with non-Asians, but both groups show a 15% decline per year as age increases (95% confidence interval, 12 to 17% p<0.0001). Prediction intervals indicate substantial variability around the axial elongation estimates.
CONCLUSIONS
This analysis provides mean values of axial elongation for evaluation of efficacy of myopia control. The broad prediction intervals emphasize the large range of individual axial elongation rates in the population, illustrating the challenge in managing individual children. Interpretation of the analysis is limited by the use of aggregated data rather than individual subject data.
期刊介绍:
Optometry and Vision Science is the monthly peer-reviewed scientific publication of the American Academy of Optometry, publishing original research since 1924. Optometry and Vision Science is an internationally recognized source for education and information on current discoveries in optometry, physiological optics, vision science, and related fields. The journal considers original contributions that advance clinical practice, vision science, and public health. Authors should remember that the journal reaches readers worldwide and their submissions should be relevant and of interest to a broad audience. Topical priorities include, but are not limited to: clinical and laboratory research, evidence-based reviews, contact lenses, ocular growth and refractive error development, eye movements, visual function and perception, biology of the eye and ocular disease, epidemiology and public health, biomedical optics and instrumentation, novel and important clinical observations and treatments, and optometric education.