Supervised learning-based artificial senses for non-destructive fish quality classification

IF 10.7 1区 生物学 Q1 BIOPHYSICS
{"title":"Supervised learning-based artificial senses for non-destructive fish quality classification","authors":"","doi":"10.1016/j.bios.2024.116770","DOIUrl":null,"url":null,"abstract":"<div><p>Human sensory techniques are inadequate for automating fish quality monitoring and maintaining controlled storage conditions throughout the supply chain. The dynamic monitoring of a single quality index cannot anticipate explicit freshness losses, which remarkably drops consumer acceptability. For the first time, a complete artificial sensory system is designed for the early detection of fish quality prediction. At non-isothermal storages, the rainbow trout quality is monitored by the gas sensors, texturometer, pH meter, camera, and TVB-N analysis. After data preprocessing, correlation analysis identifies the key parameters such as trimethylamine, ammonia, carbon dioxide, hardness, and adhesiveness to input into a back-propagation neural network. Using gas and textural key parameters, around 99 % prediction accuracy is achieved, precisely classifying fresh and spoiled classes. The regression analysis identifies a few gaps due to fewer datasets for model training, which can be reduced using few-shot learning techniques in the future. However, the multiparametric fusion of texture with gases enables early freshness loss detection and shows the capacity to automate the food supply chain completely.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324007760","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Human sensory techniques are inadequate for automating fish quality monitoring and maintaining controlled storage conditions throughout the supply chain. The dynamic monitoring of a single quality index cannot anticipate explicit freshness losses, which remarkably drops consumer acceptability. For the first time, a complete artificial sensory system is designed for the early detection of fish quality prediction. At non-isothermal storages, the rainbow trout quality is monitored by the gas sensors, texturometer, pH meter, camera, and TVB-N analysis. After data preprocessing, correlation analysis identifies the key parameters such as trimethylamine, ammonia, carbon dioxide, hardness, and adhesiveness to input into a back-propagation neural network. Using gas and textural key parameters, around 99 % prediction accuracy is achieved, precisely classifying fresh and spoiled classes. The regression analysis identifies a few gaps due to fewer datasets for model training, which can be reduced using few-shot learning techniques in the future. However, the multiparametric fusion of texture with gases enables early freshness loss detection and shows the capacity to automate the food supply chain completely.

基于监督学习的人工感官用于非破坏性鱼类质量分类
人工感官技术不足以实现水产品质量监测自动化,也无法在整个供应链中保持受控的储存条件。对单一质量指标的动态监测无法预知明显的新鲜度损失,这会显著降低消费者的接受度。我们首次设计了一套完整的人工感官系统,用于鱼类质量预测的早期检测。在非等温贮藏库中,通过气体传感器、纹理计、pH 计、摄像头和 TVB-N 分析来监测虹鳟鱼的质量。数据预处理后,通过相关分析确定关键参数,如三甲胺、氨、二氧化碳、硬度和粘附性,并输入反向传播神经网络。利用气体和纹理关键参数,预测准确率达到约 99%,精确划分了新鲜和变质类别。回归分析发现,由于用于模型训练的数据集较少,因此存在一些差距,今后可利用少量学习技术缩小差距。然而,纹理与气体的多参数融合能够实现早期新鲜度损失检测,并显示出完全实现食品供应链自动化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信