{"title":"Iterative Methods with Self-Learning for Solving Nonlinear Equations","authors":"Yu. S. Popkov","doi":"10.1134/S0005117924050060","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to the problem of solving a system of nonlinear equations with an arbitrary but continuous vector function on the left-hand side. By assumption, the values of its components are the only a priori information available about this function. An approximate solution of the system is determined using some iterative method with parameters, and the qualitative properties of the method are assessed in terms of a quadratic residual functional. We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC) experiments, an exponential utility function, and a payoff function that implements Bellman’s optimality principle. A theorem on the strict monotonic decrease of the residual functional is proven.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S0005117924050060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the problem of solving a system of nonlinear equations with an arbitrary but continuous vector function on the left-hand side. By assumption, the values of its components are the only a priori information available about this function. An approximate solution of the system is determined using some iterative method with parameters, and the qualitative properties of the method are assessed in terms of a quadratic residual functional. We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC) experiments, an exponential utility function, and a payoff function that implements Bellman’s optimality principle. A theorem on the strict monotonic decrease of the residual functional is proven.
期刊介绍:
Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).