Multiscale Glass Fiber/Epoxy Nanocomposites Incorporated with Graphene and Zinc Oxide Nanoparticles: Enhanced Mechanical Properties

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Barshan Dev, Shah Ashiquzzaman Nipu, Md Ashikur Rahman, Khondokar Raihan Mahmud, Maksudur Rahman Riyad, Md Zillur Rahman
{"title":"Multiscale Glass Fiber/Epoxy Nanocomposites Incorporated with Graphene and Zinc Oxide Nanoparticles: Enhanced Mechanical Properties","authors":"Barshan Dev, Shah Ashiquzzaman Nipu, Md Ashikur Rahman, Khondokar Raihan Mahmud, Maksudur Rahman Riyad, Md Zillur Rahman","doi":"10.1002/mame.202400245","DOIUrl":null,"url":null,"abstract":"This study fabricates multiscale glass fiber/epoxy composites by incorporating graphene nanoparticles (GNPs) and zinc oxide nanoparticles (ZnO NPs) to investigate the influences of NPs on the mechanical properties of composites. The composites are manufactured using the compression molding technique with different GNP contents (i.e., 0, 0.5, 1, and 1.5 wt.%), whereas the contents of glass fibers and ZnO NPs remained the same at 40 and 4 wt.%, respectively. Their mechanical properties, chemical compositions, and fracture morphologies are then evaluated. It is found that the mechanical properties of composites improve significantly at a lower content (i.e., 0.5 wt.%) of GNPs and tend to decrease at higher contents (i.e., 1 and 1.5 wt.%). The composite is composed of 0.5 wt.% GNPs exhibit maximum tensile modulus and strength of 6.74 GPa and 230.25 MPa, and flexural modulus and strength of 16.43 GPa and 831.79 MPa, respectively, impact strength of 47.25 kJ m<jats:sup>−2</jats:sup>, and maximum hardness (97.96 Shore D), among all nanocomposites. Moreover, fracture morphologies reveal that composite failure is predominately caused by fiber breakage, fiber‐matrix debonding, voids, and GNP agglomeration. The outcomes of this study provide some insights to promote the application of manufactured multiscale composites in the aerospace, automotive, and marine industries.","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"27 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mame.202400245","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study fabricates multiscale glass fiber/epoxy composites by incorporating graphene nanoparticles (GNPs) and zinc oxide nanoparticles (ZnO NPs) to investigate the influences of NPs on the mechanical properties of composites. The composites are manufactured using the compression molding technique with different GNP contents (i.e., 0, 0.5, 1, and 1.5 wt.%), whereas the contents of glass fibers and ZnO NPs remained the same at 40 and 4 wt.%, respectively. Their mechanical properties, chemical compositions, and fracture morphologies are then evaluated. It is found that the mechanical properties of composites improve significantly at a lower content (i.e., 0.5 wt.%) of GNPs and tend to decrease at higher contents (i.e., 1 and 1.5 wt.%). The composite is composed of 0.5 wt.% GNPs exhibit maximum tensile modulus and strength of 6.74 GPa and 230.25 MPa, and flexural modulus and strength of 16.43 GPa and 831.79 MPa, respectively, impact strength of 47.25 kJ m−2, and maximum hardness (97.96 Shore D), among all nanocomposites. Moreover, fracture morphologies reveal that composite failure is predominately caused by fiber breakage, fiber‐matrix debonding, voids, and GNP agglomeration. The outcomes of this study provide some insights to promote the application of manufactured multiscale composites in the aerospace, automotive, and marine industries.
加入石墨烯和氧化锌纳米颗粒的多尺度玻璃纤维/环氧纳米复合材料:增强的力学性能
本研究通过加入石墨烯纳米粒子(GNPs)和氧化锌纳米粒子(ZnO NPs)制备了多尺度玻璃纤维/环氧树脂复合材料,以研究 NPs 对复合材料机械性能的影响。复合材料采用压缩成型技术制造,GNP 含量不同(即 0、0.5、1 和 1.5 wt.%),而玻璃纤维和 ZnO NPs 的含量保持不变,分别为 40 和 4 wt.%。然后对它们的机械性能、化学成分和断裂形态进行了评估。结果发现,复合材料的机械性能在 GNP 含量较低时(即 0.5 wt.%)有明显改善,而在含量较高时(即 1 和 1.5 wt.%)有下降趋势。在所有纳米复合材料中,由 0.5 wt.% GNPs 组成的复合材料的拉伸模量和强度最大,分别为 6.74 GPa 和 230.25 MPa;弯曲模量和强度最大,分别为 16.43 GPa 和 831.79 MPa;冲击强度最大,为 47.25 kJ m-2;硬度最大,为 97.96 Shore D。此外,断裂形态显示,复合材料失效主要是由纤维断裂、纤维与基体脱粘、空隙和 GNP 聚结引起的。这项研究的成果为促进人造多尺度复合材料在航空航天、汽车和船舶工业中的应用提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信