On $(n-2)$-connected $2n$-dimensional Poincaré complexes with torsion-free homology

Xueqi Wang
{"title":"On $(n-2)$-connected $2n$-dimensional Poincaré complexes with torsion-free homology","authors":"Xueqi Wang","doi":"arxiv-2408.09996","DOIUrl":null,"url":null,"abstract":"Let $X$ be an $(n-2)$-connected $2n$-dimensional Poincar\\'e complex with\ntorsion-free homology, where $n\\geq 4$. We prove that $X$ can be decomposed\ninto a connected sum of two Poincar\\'e complexes: one being $(n-1)$-connected,\nwhile the other having trivial $n$th homology group. Under the additional\nassumption that $H_n(X)=0$ and $Sq^2:H^{n-1}(X;\\mathbb{Z}_2)\\to\nH^{n+1}(X;\\mathbb{Z}_2)$ is trivial, we can prove that $X$ can be further\ndecomposed into connected sums of Poincar\\'e complexes whose $(n-1)$th homology\nis isomorphic to $\\mathbb{Z}$. As an application of this result, we classify\nthe homotopy types of such $2$-connected $8$-dimensional Poincar\\'e complexes.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X$ be an $(n-2)$-connected $2n$-dimensional Poincar\'e complex with torsion-free homology, where $n\geq 4$. We prove that $X$ can be decomposed into a connected sum of two Poincar\'e complexes: one being $(n-1)$-connected, while the other having trivial $n$th homology group. Under the additional assumption that $H_n(X)=0$ and $Sq^2:H^{n-1}(X;\mathbb{Z}_2)\to H^{n+1}(X;\mathbb{Z}_2)$ is trivial, we can prove that $X$ can be further decomposed into connected sums of Poincar\'e complexes whose $(n-1)$th homology is isomorphic to $\mathbb{Z}$. As an application of this result, we classify the homotopy types of such $2$-connected $8$-dimensional Poincar\'e complexes.
关于(n-2)$连接的具有无扭同调的 2n$ 维波因卡雷复合物
让 $X$ 是一个 $(n-2)$ 连接的 2n$ 维 Poincar\'e 复数,具有无扭转同调,其中 $n\geq 4$。我们证明 $X$ 可以分解成两个波因卡复数的连接和:一个是 $(n-1)$ 连接的,而另一个具有微不足道的 $n$ 第同调群。在$H_n(X)=0$和$Sq^2:H^{n-1}(X;\mathbb{Z}_2)\toH^{n+1}(X;\mathbb{Z}_2)$是微不足道的这一额外假设下,我们可以证明$X$可以进一步分解为其$(n-1)$次同调与$\mathbb{Z}$同构的Poincar'e复元的连通和。作为这一结果的应用,我们对这种2$连接的8$维Poincar\'e 复数的同调类型进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信