{"title":"Super-Resolution Microscopic Imaging of Lipid Droplets in Living Cells via Carbonized Polymer Dot-Based Polarity-Responsive Nanoprobe","authors":"Zepeng Huo, Zitong Yu, Weiqing Xu, Shuping Xu","doi":"10.1021/acsmeasuresciau.4c00049","DOIUrl":null,"url":null,"abstract":"Lipid droplets (LDs) are dynamic subcellular organelles that participate in various physiological processes, and their abnormality can also lead to various diseases. Tracing the dynamics of LDs in living cells will be valuable for understanding cell physiological states. Here, we employed a structured light illumination super-resolution imaging assisted with a carbonized polymer dot (CPD)-based fluorescence nanoprobe to track the travel paths of LDs and other organelles. The CPDs we developed are highly biocompatible with living cells and exhibit a highly sensitive response to solvent polarity, allowing for high specificity in staining LDs in living cells. Aided by these nanoprobes, we successfully observed many real-time LD-involved dynamics in living cells, such as intracellular LD interactions, communications with other organelles, and dynamic behaviors under external stimuli (oxidative stress inducer). These studies deepen our comprehension of the physiological role of LDs and drive the advancement of super-resolution fluorescent probes.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"24 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.4c00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid droplets (LDs) are dynamic subcellular organelles that participate in various physiological processes, and their abnormality can also lead to various diseases. Tracing the dynamics of LDs in living cells will be valuable for understanding cell physiological states. Here, we employed a structured light illumination super-resolution imaging assisted with a carbonized polymer dot (CPD)-based fluorescence nanoprobe to track the travel paths of LDs and other organelles. The CPDs we developed are highly biocompatible with living cells and exhibit a highly sensitive response to solvent polarity, allowing for high specificity in staining LDs in living cells. Aided by these nanoprobes, we successfully observed many real-time LD-involved dynamics in living cells, such as intracellular LD interactions, communications with other organelles, and dynamic behaviors under external stimuli (oxidative stress inducer). These studies deepen our comprehension of the physiological role of LDs and drive the advancement of super-resolution fluorescent probes.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.