{"title":"Hybrid Nanoarchitectronics of Tantalum Oxide‐Coated Gold Nanoparticles as Localized Surface Plasmon Resonance‐Based Sensors for Volatile Organic Compounds Detection","authors":"Kiratikarn Changpradub, Thotsaphon Threrujirapapong, Tossaporn Lertvanithphol, Ratthasart Amarit, Kruawan Wongpanya, Khwanchai Tantiwanichapan, Tuksadon Wutikhun, Annop Klamchuen, Hideki Nakajima, Mati Horprathum","doi":"10.1002/pssa.202400181","DOIUrl":null,"url":null,"abstract":"Herein, a localized surface plasmon resonance‐based sensor for volatile organic compounds (VOCs) detection is developed. The sensors are fabricated as a hybrid nanostructure of gold nanoparticles coated with a tantalum oxide (TaO) thin film on a glass slide substrate through magnetron sputtering and thermal solid‐state dewetting techniques. The thickness of the TaO film varies between 10 and 70 nm. The optical properties of samples are characterized by UV‐Vis‐NIR spectrophotometry, while their morphologies are confirmed via transmission electron microscopy. The results show the shift of the minimum optical transmittance related to the TaO thickness. Electrical field simulations are performed to predict the sensitivity of the prepared samples for VOCs detection. In addition, the sensors are tested with different VOCs, including formaldehyde, isopropanol, acetone, and methanol, which show good potential for practical applications.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400181","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a localized surface plasmon resonance‐based sensor for volatile organic compounds (VOCs) detection is developed. The sensors are fabricated as a hybrid nanostructure of gold nanoparticles coated with a tantalum oxide (TaO) thin film on a glass slide substrate through magnetron sputtering and thermal solid‐state dewetting techniques. The thickness of the TaO film varies between 10 and 70 nm. The optical properties of samples are characterized by UV‐Vis‐NIR spectrophotometry, while their morphologies are confirmed via transmission electron microscopy. The results show the shift of the minimum optical transmittance related to the TaO thickness. Electrical field simulations are performed to predict the sensitivity of the prepared samples for VOCs detection. In addition, the sensors are tested with different VOCs, including formaldehyde, isopropanol, acetone, and methanol, which show good potential for practical applications.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.